Skip to main content
Log in

Dynamics of quantum Fisher information in the two-qubit systems constructed from the Yang–Baxter matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By using the quantum Yang–Baxterization approach to the three different Hamiltonians, we investigate the behavior of the quantum Fisher information (QFI) under the actions of these Hamiltonians on the different two-qubit input states and by estimating the meaningful parameter \(\varphi \). We address the overall estimation properties by evaluating the QFI for the whole system undergone different unitary evolution. The results show that the behavior of the QFI depends on the choice of the initial states. Choosing the optimal input states can improve the precision of quantum parameter estimation. On the other hand, we also focus on the dynamical evolution of QFI to distinguish Markovianity and non-Markovianity of the process by adopting the flow of QFI as the quantitative measure for the information flow. We show that the Hamiltonians constructed with Yang–Baxter matrices influence the dynamics of the system in the sense of the Markovianity and non-Markovianity. In certain ranges of parameters, we observe that dynamical evolutions of the systems show non-Markovian behavior in which the information flows from the environment to the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  2. Holevo, A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics, vol. 61. Springer, Berlin (2001)

    Google Scholar 

  3. Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  4. Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Phil. Soc. 22, 700–725 (1925)

    ADS  MATH  Google Scholar 

  5. Barndorff-Nielsen, O.E., Gill, R.D.: Fisher information in quantum statistics. J. Phys. A 33, 4481 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inform. 07, 125 (2009)

    MATH  Google Scholar 

  7. Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A: Math. Theor. 47, 424006 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    ADS  Google Scholar 

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum Metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    ADS  Google Scholar 

  11. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Kauffman, L.H., Lomonaco Jr., S.J.: Braiding operators are universal quantum gates. New J. Phys. 36, 134 (2004)

    Google Scholar 

  13. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005)

    MATH  Google Scholar 

  15. Zhang, Y., Ge, M.L.: GHZ states, almost-complex structure and Yang–Baxter equation. Quant. Inf. Proc. 6, 363 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge, M.L.: From extraspecial twogroups to GHZ states. E-print quant-ph/0706.1761 (2007)

  17. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    ADS  Google Scholar 

  18. Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states generated via a universal Yang–Baxter matrix assisted by local unitary transformations. Chin. Phys. Lett. 26, 080306 (2009)

    ADS  Google Scholar 

  20. Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation. Chapman Hall/CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  21. Wang, G., Xue, K., Wu, C., Liang, H., Oh, C.H.: Entanglement and Berry phase in a new Yang–Baxter system. J. Phys. A Math. Theor. 42, 125207 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Jones, V.F.R.: Baxterization. Int. J. Mod. Phys. A 6, 2035–2043 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Ge, M.L., Xue, K., Wu, Y.-S.: Explicit trigonometric Yang–Baxterization. Int. J. Mod. Phys. A 6, 3735 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Hu, S.W., Xue, K., Ge, M.-L.: Optical simulation of the Yang–Baxter equation. Phys. Rev. A 78, 022319 (2008)

    ADS  Google Scholar 

  25. Hu, T., Sun, C., Xue, K.: The sudden death of entanglement in constructed Yang–Baxter systems. Quant. Inf. Proc. 9, 27–35 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    ADS  Google Scholar 

  27. Song, H., Luo, S., Hong, Y.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91, 042110 (2015)

    ADS  Google Scholar 

  28. Ban, M.: Quantum Fisher information of a qubit initially correlated with a non-Markovian environment. Quantum Inf. Process. 14, 4163–4177 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    ADS  Google Scholar 

  30. Zhong, W., Sun, Z., Ma, J., Wang, X.-G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    ADS  Google Scholar 

  31. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  32. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Rivas, Á., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    ADS  MathSciNet  Google Scholar 

  34. Holevo, A.S., Ballentine, L.E.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland (1982)

  35. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  37. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)

    MathSciNet  MATH  Google Scholar 

  38. Liu, J., Jing, X.X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    ADS  Google Scholar 

  39. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    ADS  Google Scholar 

  40. Liu, J., Jing, X.X., Zhong, W., Wang, X.G.: Quantum Fisher information for density matrices with arbitrary ranks. Commun. Theor. Phys. 61, 45–50 (2014)

    ADS  MATH  Google Scholar 

  41. Jing, X.X., Liu, J., Zhong, W., Wang, X.G.: Quantum Fisher information of entangled coherent states in a lossy Mach–Zehnder interferometer. Commun. Theor. Phys. 61, 115–120 (2014)

    ADS  Google Scholar 

  42. Liu, J., Yuan, H., Lu, X.M., Wang, X.G.: Quantum Fisher information matrix and multiparameter estimation. arXiv:1907.08037 (2019)

  43. Boixo, S., Flammia, S.T., Caves, C.M., Geremia, J.M.: Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007)

    ADS  Google Scholar 

  44. Liu, J., Jing, X.X., Wang, X.G.: Quantum metrology with unitary parametrization processes. Sci. Rep. 5, 8565 (2015)

    Google Scholar 

  45. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    ADS  Google Scholar 

  46. Lin, D., Liu, Y., Zou, H.-M.: Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength. Chin. Phys. B 27(11), 110303 (2018)

    ADS  Google Scholar 

  47. Abu-Zinadah, H.H., Abdel-Khalek, S.: Fisher information and quantum state estimation of two-coupled atoms in presence of two external magnetic fields. Results in Physics 7, 4318–4323 (2017)

    ADS  Google Scholar 

  48. Haikka, P., Goold, J., McEndoo, S., Plastina, F., Maniscalco, S.: Non-Markovianity, Loschmidt echo, and criticality: A unified picture. Phys. Rev. A 85, 060101(R) (2012)

    ADS  Google Scholar 

  49. Hao, X., Wu, W., Zhu, S.: Nonunital non-Markovian dynamics induced by a spin bath, interplay of quantum Fisher information, arXiv:1311.5952 (2013)

  50. Hao, X., Tong, N.-H., Zhu, S.: Dynamics of the quantum Fisher information in a spin-boson model. J. Phys. A: Math. Theor. 46, 355302 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Yang, C.N.: \(S\) matrix for the one-dimensional \(N\)-body problem with repulsive or attractive \(\delta \)-function interaction. Phys. Rev. 168, 1920 (1968)

    ADS  Google Scholar 

  53. Baxter, R.J.: Partition function of the Eight-Vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  55. Jimbo, M.: Introduction to the Yang–Baxter equation. Int. J. Modern Phys. A 4(15), 3759–3777 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Temperley, H.N.V., Lieb, E.H.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. London A 322, 251–280 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Hu, S.W., Hu, M.G., Xue, K., Ge, M.L.: Linear optics implementation for Yang–Baxter equation. arXiv: 0711.4703v2 (2007)

  58. Sun, C., Hu, T., Wu, C., Xue, K.: Thermal entanglement in the systems constructed from the Yang–Baxter R-matrix. Int. J. Quant. Inf. 7(5), 879–889 (2009)

    MATH  Google Scholar 

  59. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  60. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgun Duran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, D. Dynamics of quantum Fisher information in the two-qubit systems constructed from the Yang–Baxter matrices. Quantum Inf Process 19, 332 (2020). https://doi.org/10.1007/s11128-020-02847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02847-7

Keywords

PACS

Navigation