Skip to main content
Log in

Optomechanically Induced Transparency in Double-Laguerre-Gaussian-Cavity with Atomic Ensemble

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate the phenomenon of optomechanically induced transparency (OMIT), the measurement of the atom-photon coupling strength and orbital angular momentum (OAM) in a double-Laguerre-Gaussian rotating cavity optomechanical system. The vibration mirror cavity optomechanical system traps the atomic ensemble. We study the influence of the atomic ensemble on the OMIT windows, and give an explicit explanation of the physical mechanism. We find that the normal-mode splitting (NMS) phenomenon occurs in double L-G cavity modes when the tunneling strength increases to a certain extent. We find that the distance between the peaks of the absorption on both sides changes nearly linearly with the pump laser power and the single atom-photon coupling strength. Additionally, we also propose a scheme for measuring the atom-photon coupling strength and orbital angular momentum (OAM). This research is of great significance in the field of high-precision measurement and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. Liu, Z.X., Wang, B., Kong, C., Xiong, H., Wu, Y.: Magnetic-field-dependent slow light in strontium atom-cavity system. Appl. Phys. Lett. 112, 111109 (2018)

    Article  ADS  Google Scholar 

  3. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics. 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  4. Novikova, I., Walsworth, R.L., Xiao, Y.: Optical quantum memory. Laser. Photonics. Rev. 6, 333–353 (2012)

    Article  ADS  Google Scholar 

  5. Acosta, V.M., Jensen, K., Santori, C., Budker, D., Beausoleil, R.G.: Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing. Phys. Rev. Lett. 110, 213605 (2013)

    Article  ADS  Google Scholar 

  6. Zhang, J.Q., Zhang, S., Zou, J.H., Chen, L., Yang, W., Li, Y., Feng, M.: Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Opt. Express. 21, 29695–29710 (2013)

    Article  ADS  Google Scholar 

  7. Kang, H., Zhu, Y.: Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett. 91, 093601 (2003)

    Article  ADS  Google Scholar 

  8. Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  9. Shen, J.Q., He, S.: Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide. Phys. Rev. A. 74, 063831 (2006)

    Article  ADS  Google Scholar 

  10. Jiang, C., Liu, H.X., Cui, Y.S., Li, X.W., Chen, G.B.: Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt. Express. 21, 12165–12173 (2013)

    Article  ADS  Google Scholar 

  11. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  12. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A. 81, 041803 (2010)

    Article  ADS  Google Scholar 

  13. Lin, Q., Rosenberg, J., Chang, D., Camacho, R., Eichenfield, M., Vahala, K.J., Painter, O.: Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics. 4, 236–242 (2010)

    Article  ADS  Google Scholar 

  14. Safavi-Naeini, A.H., Alegre, T.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  15. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  ADS  Google Scholar 

  16. Anupriya, J., Ram, N., Pattabiraman, M.: Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam. Phys. Rev. A. 81, 043804 (2010)

    Article  ADS  Google Scholar 

  17. Akin, T.G., Krzyzewski, S.P., Marino, A.M., Abraham, E.I.: Electromagnetically induced transparency with Laguerre-Gaussian modes in ultracold rubidium. Opt. Commun. 339, 209–215 (2015)

    Article  Google Scholar 

  18. Peng, J.X., Chen, Z., Yuan, Q.Z., Feng, X.L.: Optomechanically induced transparency in a Laguerre-Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields. Phys. Rev. A. 99, 043817 (2019)

    Article  ADS  Google Scholar 

  19. Peng, J.X., Chen, Z., Yuan, Q.Z., Feng, X.L.: Double optomechanically induced transparency in a Laguerre-Gaussian rovibrational cavity. Phys. Lett. A. 384, 126153 (2020)

    Article  Google Scholar 

  20. Mann, N., Bakhtiari, M.R., Pelster, A., Thorwart, M.: Nonequilibrium quantum phase transition in a hybrid atom-optomechanical system. Phys. Rev. Lett. 120, 063605 (2018)

    Article  ADS  Google Scholar 

  21. Nie, W.J., Lan, Y.H., Li, Y., Zhu, S.Y.: Generating large steady-state optomechanical entanglement by the action of Casimir force. Sci. China-Phys. Mech. Astron. 57, 2276–2284 (2014)

    Article  ADS  Google Scholar 

  22. Huang, S.M., Chen, A.X.: Quadrature-squeezed light and optomechanical entanglement in a dissipative optomechanical system with a mechanical parametric drive. Phys. Rev. A. 98, 063843 (2018)

    Article  ADS  Google Scholar 

  23. Chen, Y.H., Qin, W., Nori, F.: Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification. Phys. Rev. A. 100, 012339 (2019)

    Article  ADS  Google Scholar 

  24. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A. 90, 043825 (2014)

    Article  ADS  Google Scholar 

  25. He, Y.: Sensitivity of optical mass sensor enhanced by optomechanical coupling. Appl. Phys. Lett. 106, 121905 (2015)

    Article  ADS  Google Scholar 

  26. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A. 91, 063827 (2015)

    Article  ADS  Google Scholar 

  27. He, Y.: Light storage and cavity supermodes in two coupled optomechanical cavities. Phys. Rev. A. 94, 063804 (2016)

    Article  ADS  Google Scholar 

  28. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A. 86, 053806 (2012)

    Article  ADS  Google Scholar 

  29. Abramovici, A., Althouse, W., Drever, R., Gursel, Y., Kawamura, S., Raab, F., Shoemaker, D., Sievers, L., Spero, R.: The laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992)

    Article  ADS  Google Scholar 

  30. Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A. 92, 033829 (2015)

    Article  ADS  Google Scholar 

  31. Groblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    Article  ADS  Google Scholar 

  32. Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  33. Xiong, Y.L., Wanguemert-Perez, J.G., Xu, D.X., Schmid, J.H., Cheben, P., Ye, W.N.: Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt. Lett. 39, 6931–6934 (2014)

    Article  ADS  Google Scholar 

  34. Liao, Q.H., Xiao, X., Nie, W.J., Zhou, N.R.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express. 28, 5288–5305 (2020)

    Article  ADS  Google Scholar 

  35. Bhattacharya, M., Giscard, P.L., Meystre, P.: Entangling the rovibrational modes of a macroscopic mirror using radiation pressure. Phys. Rev. A. 77, 030303 (2008)

    Article  ADS  Google Scholar 

  36. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zheng, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble. Opt. Express. 26, 6143–6157 (2018)

    Article  ADS  Google Scholar 

  37. Zhang, Z.C., Pei, J.C., Wang, Y.P., Wang, X.G.: Measuring orbital angular momentum of vortex beams in optomechanics. Front. Phys. 16, 32503 (2021)

    Article  ADS  Google Scholar 

  38. Kazemi, S.H., Mahmoudi, M.: Optomechanical second-order sideband effects in a Laguerre-Gaussian rotational-cavity system. Phys. Scr. 95, 045107 (2020)

    Article  ADS  Google Scholar 

  39. Jin, C., Li, B., Wang, K., Xu, C., Tang, X., Yu, C., Lin, C.D.: Phase-matching analysis in high-order harmonic generation with nonzero orbital angular momentum Laguerre-Gaussian beams. Phys. Rev. A. 102, 033113 (2020)

    Article  ADS  Google Scholar 

  40. Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y.X., Yue, Y., Dolinar, S., Tur, M.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics. 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  41. Yan, Y., Yue, Y., Huang, H., Ren, Y.X., Ahmed, N., Tur, M., Dolinar, S., Willner, A.: Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt. Lett. 38, 3930–3933 (2013)

    Article  ADS  Google Scholar 

  42. Bozinovic, N., Yue, Y., Ren, Y.X., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  43. Li, S.H., Wang, J.: A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings× 22 modes). Sci. Rep. 4, 3853 (2014)

    Article  ADS  Google Scholar 

  44. Gibson, G., Courtial, J., Padgett, M., Vasnetsov, M., Pas’ko, V., Barnett, S., Franke-Arnoid, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express. 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  45. Chen, M.Z., Mazilu, M., Arita, Y., Wright, E.M., Dholakia, K.: Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 38, 4919–4922 (2013)

    Article  ADS  Google Scholar 

  46. Ding, D.S., Zhang, W., Zhou, Z.Y., Shi, S., Xiang, G.Y., Wang, X.S., Jiang, Y.K., Shi, B.S., Guo, G.C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015)

    Article  ADS  Google Scholar 

  47. Harris, M., Hill, C.A., Vaughan, J.M.: Optical helices and spiral interference fringes. Opt. Commun. 106, 161–166 (1994)

    Article  ADS  Google Scholar 

  48. Harris, M., Hill, C.A., Tapster, P., Vaughan, J.: Laser modes with helical wave fronts. Phys. Rev. A. 49, 3119–3122 (1994)

    Article  ADS  Google Scholar 

  49. Vaity, P., Banerji, J., Singh, R.P.: Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A. 377, 1154–1156 (2013)

    Article  ADS  Google Scholar 

  50. Zheng, S., Wang, J.: Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep. 7, 40781 (2017)

    Article  ADS  Google Scholar 

  51. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  52. Xiao, X., Liao, Q.H., Zhou, N.R., Nie, W.J., Liu, Y.C.: Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Sci. China-Phys. Mech. Astron. 63, 114211 (2020)

    Article  ADS  Google Scholar 

  53. Chen, B., Shang, L., Wang, X.F., Chen, J.B., Xue, H.B., Liu, X., Zhang, J.: Atom-assisted second-order sideband generation in an optomechanical system with atom-cavity-resonator coupling. Phys. Rev. A. 99, 063810 (2019)

    Article  ADS  Google Scholar 

  54. Walls, D.F., Milburn, G.J.: Quantum Optics (Springer Science & Business Media, 2007)

  55. Bhattacharya, M., Meystre, P.: Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror. Phys. Rev. Lett. 99, 153603 (2007)

    Article  ADS  Google Scholar 

  56. Bhattacharya, M., Giscard, P.L., Meystre, P.: Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror. Phys. Rev. A. 77, 013827 (2008)

    Article  ADS  Google Scholar 

  57. Butsch, A., Koehler, J.R., Noskov, R.E., Russell, P.J.: CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber. Optica. 1, 158–164 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Project was supported by the National Natural Science Foundation of China (Grant No. 62061028), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202010), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Sun, J., Liu, Z. et al. Optomechanically Induced Transparency in Double-Laguerre-Gaussian-Cavity with Atomic Ensemble. Int J Theor Phys 61, 150 (2022). https://doi.org/10.1007/s10773-022-05131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05131-9

Keywords

Navigation