Skip to main content
Log in

Measuring orbital angular momentum of vortex beams in optomechanics

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Measuring the orbital angular momentum (OAM) of vortex beams, including the magnitude and the sign, has great application prospects due to its theoretically unbounded and orthogonal modes. Here, the sign-distinguishable OAM measurement in optomechanics is proposed, which is achieved by monitoring the shift of the transmission spectrum of the probe field in a double Laguerre-Gaussian (LG) rotational-cavity system. Compared with the traditional single LG rotational cavity, an asymmetric optomechanically induced transparency window can occur in our system. Meanwhile, the position of the resonance valley has a strong correlation with the magnitude and sign of OAM. This originally comes from the fact that the effective detuning of the cavity mode from the driving field can vary with the magnitude and sign of OAM, which causes the spectral shift to be directional for different signs of OAM. Our scheme solves the shortcoming of the inability to distinguish the sign of OAM in optomechanics, and works well for high-order vortex beams with topological charge value ±45, which is a significant improvement for measuring OAM based on the cavity optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. R. Soc. Lond. A 336(1605), 165 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45(11), 8185 (1992)

    Article  ADS  Google Scholar 

  3. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Helical-wavefront laser beams produced with a spiral phaseplate, Opt. Commun. 112(5–6), 321 (1994)

    Article  ADS  Google Scholar 

  4. S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. T. Hooft, Half-integral spiral phase plates for optical wave-lengths, J. Opt. A 6(5), S288 (2004)

    Article  ADS  Google Scholar 

  5. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Screw dislocations in light wavefronts, J. Mod. Opt. 39(5), 985 (1992)

    Article  ADS  Google Scholar 

  6. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Optics of light beams with screw dislocations, Opt. Commun. 103(5–6), 422 (1993)

    Article  ADS  Google Scholar 

  7. Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, and L. Feng, Tunable topological charge vortex microlaser, Science 368(6492), 760 (2020)

    Article  ADS  Google Scholar 

  8. Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, and R. Agarwal, Photocurrent detection of the orbital angular momentum of light, Science 368(6492), 763 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(5), 050502 (2015)

    Article  ADS  Google Scholar 

  10. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6(7), 488 (2012)

    Article  ADS  Google Scholar 

  11. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340(6140), 1545 (2013)

    Article  ADS  Google Scholar 

  12. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, Dynamics of microparticles trapped in a perfect vortex beam, Opt. Lett. 38(22), 4919 (2013)

    Article  ADS  Google Scholar 

  13. M. J. Padgett and R. Bowman, Tweezers with a twist, Nat. Photonics 5(6), 343 (2011)

    Article  ADS  Google Scholar 

  14. M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, Single beam optical vortex tweezers with tunable orbital angular momentum, Appl. Phys. Lett. 104(23), 231110 (2014)

    Article  ADS  Google Scholar 

  15. M. Harris, C. A. Hill, and J. M. Vaughan, Optical helices and spiral interference fringes, Opt. Commun. 106(4–6), 161 (1994)

    Article  ADS  Google Scholar 

  16. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, Laser modes with helical wave fronts, Phys. Rev. A 49(4), 3119 (1994)

    Article  ADS  Google Scholar 

  17. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum, Phys. Rev. Lett. 105(5), 053904 (2010)

    Article  ADS  Google Scholar 

  18. C. S. Guo, L. L. Lu, and H. T. Wang, Characterizing topological charge of optical vortices by using an annular aperture, Opt. Lett. 34(23), 3686 (2009)

    Article  ADS  Google Scholar 

  19. P. Vaity, J. Banerji, and R. P. Singh, Measuring the topological charge of an optical vortex by using a tilted convex lens, Phys. Lett. A 377(15), 1154 (2013)

    Article  ADS  Google Scholar 

  20. S. Zheng and J. Wang, Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings, Sci. Rep. 7(1), 40781 (2017)

    Article  ADS  Google Scholar 

  21. S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)

    Article  Google Scholar 

  22. G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)

    Article  ADS  Google Scholar 

  23. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)

    Article  ADS  Google Scholar 

  24. J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Optomechanically induced transparency in a Laguerre-Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields, Phys. Rev. A 99(4), 043817 (2019)

    Article  ADS  Google Scholar 

  25. M. Bhattacharya and P. Meystre, Using a laguerregaussian beam to trap and cool the rotational motion of a mirror, Phys. Rev. Lett. 99(15), 153603 (2007)

    Article  ADS  Google Scholar 

  26. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  27. C. K. Law, Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A 51(3), 2537 (1995)

    Article  ADS  Google Scholar 

  28. M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical trapping and cooling of partially reflective mirrors, Phys. Rev. A 77(3), 033819 (2008)

    Article  ADS  Google Scholar 

  29. Y. Xiao, Y. F. Yu, and Z. M. Zhang, Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble, Opt. Express 22(15), 17979 (2014)

    Article  ADS  Google Scholar 

  30. Z. Zhang and X. Wang, Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling, Opt. Express 28(3), 2732 (2020)

    Article  ADS  Google Scholar 

  31. M. Bhattacharya, P. L. Giscard, and P. Meystre, Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror, Phys. Rev. A 77(1), 013827 (2008)

    Article  ADS  Google Scholar 

  32. M. Bhattacharya, P. L. Giscard, and P. Meystre, Entangling the rovibrational modes of a macroscopic mirror using radiation pressure, Phys. Rev. A 77, 030303(R) (2008)

    Article  ADS  Google Scholar 

  33. Z. Chen, J. X. Peng, J. J. Fu, and X. L. Feng, Entanglement of two rotating mirrors coupled to a single Laguerre-Gaussian cavity mode, Opt. Express 27(21), 29479 (2019)

    Article  ADS  Google Scholar 

  34. Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble, Opt. Express 26(5), 6143 (2018)

    Article  ADS  Google Scholar 

  35. J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Double optomechanically induced transparency in a Laguerre-Gaussian rovibrational cavity, Phys. Lett. A 384(7), 126153 (2020)

    Article  Google Scholar 

  36. C. Sanavio, J. Z. Bernad, and A. Xuereb, Fisher information based estimation of optomechanical coupling strengths, Phys. Rev. A 102(1), 013508 (2020)

    Article  ADS  Google Scholar 

  37. S. Huang and G. S. Agarwal, Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics, Phys. Rev. A 81(3), 033830 (2010)

    Article  ADS  Google Scholar 

  38. C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer-Verlag, 2004

  39. J. D. McCullen, P. Meystre, and E. M. Wright, Mirror confinement and control through radiation pressure, Opt. Lett. 9(6), 193 (1984)

    Article  ADS  Google Scholar 

  40. A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev. A 69(2), 023809 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), the National Natural Science Foundation of China (NSFC) (Grant Nos. 11875231 and 11935012), and the Fundamental Research Funds for the Central Universities through Grant No. 2018FZA3005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Wang.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1030-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Pei, J., Wang, YP. et al. Measuring orbital angular momentum of vortex beams in optomechanics. Front. Phys. 16, 32503 (2021). https://doi.org/10.1007/s11467-020-1030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1030-0

Keywords

Navigation