Skip to main content
Log in

(t,n) Threshold Quantum Secret Sharing Using Rotation Operation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a (t,n) threshold quantum secret sharing protocol for sharing quantum states is proposed by using rotation operation and Lagrange interpolation. In this protocol, according to Shamir’s (t,n) secret sharing, the dealer first shares a secret with n participants, and encrypts each quantum state through rotation operation. Then, each participant performs his encoding operation on each quantum state according to his share. Finally, the initial quantum states can be recovered by any t out of the n participants using Lagrange interpolation. The performance analysis shows that our protocol is correct and can resist some common external and internal attacks. Moreover, compared with related protocols, our protocol is more feasible with current technology. Furthermore, simulation experiments on the IBM Q Experience cloud platform demonstrate the effectiveness of the presented protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. Int Conf. Comput. Syst. Signal Process., pp. 175–179. IEEE (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bostöm, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  5. Xu, G., Xiao, K., Li, Z.P., et al.: Controlled secure direct communication protocol via the Three-Qubit partially entangled set of states. Comput. Mater. Con. 58, 809–827 (2019)

    Google Scholar 

  6. Zhang, L., Dong, S., Zhang, K.: A controller-independent quantum dialogue protocol with four-particle states. Int. J. Theor. Phys. 58, 1972–1936 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Lin, S., Zhang, X., Guo, G.D., et al.: Multiparty quantum key agreement. Phys. Rev. A 104, 042421 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  8. Wang, S.S., Jiang, D.H., Xu, G.B., et al.: Quantum key agreement with bell states and cluster states under collective noise channels. Quantum Inf. Process. 18, 190 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  9. Wang, W., Zhou, B.M., Zhang, L.: The three-party quantum key agreement protocol with quantum fourier transform. Int. J. Theor. Phys. 59, 1944–1955 (2020)

    Article  MathSciNet  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  14. Liu, W.T., Liang, L.M., Li, C.Z., et al.: Scalable quantum secret sharing extended from quantum key distribution. Chin. Phys. Lett. 24(5), 1147–1150 (2007)

    Article  ADS  Google Scholar 

  15. Zhang, K., Zhang, X., Jia, H., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18, 21 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  16. Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)

    Article  ADS  Google Scholar 

  17. Sun, Y., Xu, S.W., Chen, X.B., et al.: Expansible quantum secret sharing network. Quantum Inf. Process. 12, 2877–2888 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jia, H.Y., Wen, Q.Y., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  20. Karimipour, V., Marvian, M.: Secure quantum carriers for quantum state sharing. Int. J. Quantum Inf. 10(2), 1250018 (2012)

    Article  MathSciNet  Google Scholar 

  21. Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997–3004 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  22. Cao, H., Ma, W.P.: (t, n) Threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J. 9(1), 7600207 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lu, C.B., Miao, F.Y., Meng, K. J., Yu, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17, 64 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  24. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19, 73 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  25. Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum fourier transform. Quantum Inf. Process. 17, 48 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  26. Deng, F., Li, X., Zhou, H., et al.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  27. Shamir, A.: How to share a secret. Commun. ACM. 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  28. Blakley, G.R.: Safeguarding cryptographic keys. IEEE Computer Society. In: AFIPS, p. 313 (1979)

  29. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement ith out entanglement. Int. J. Theor. Phys. 56, 1039–1051 (2017)

    Article  Google Scholar 

  30. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Improved discrimination of unitary transformations by entangled probes. J. Opt. B: Quantum Semiclass. Opt. 4, 273 (2002)

    Article  Google Scholar 

  31. Xu, G., Jiang, D.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  32. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press (1976)

  33. Craciun, V.C., Mogage, A., Simion, E.: Trends in design of ransomware viruses. Int. Conf. Secur. Inf. Technol. Commun., pp 259–272. Springer, Berlin (2018)

    Google Scholar 

  34. Mohurle, S., Patil, M.: A brief study of wannacry threat: ransomware attack 2017. Int. J. Adv. Res. Comput. Sci. 8(5), 1938–1940 (2017)

    Google Scholar 

  35. Li, X.H., Deng, F.G.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  36. Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223–229 (1998)

    Article  ADS  Google Scholar 

  37. Lu, C.B., Miao, F.Y., Hou, J.P., Su, Z.F., Xiong, Y.: Quantum multiparty cryptosystems based on ahomomorphic random basis encryption. Quantum Inf. Process. 19, 293 (2020)

    Article  ADS  Google Scholar 

  38. Raynal, P.: Unambiguous state discrimination of two density matrices in quantum information theory. arXiv:quant-ph/0611133 (2006)

  39. Zyczkowski, K., Sommers, H.J.: Average fidelity between random quantum states. Phys. Rev. A 71, 032313 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants No. 61772134, No. 61976053, and No. 62171131), Fujian Province Natural Science Foundation (Grant No. 2018J01776), and Program for New Century Excellent Talents in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhang, X., Zhang, X. et al. (t,n) Threshold Quantum Secret Sharing Using Rotation Operation. Int J Theor Phys 61, 166 (2022). https://doi.org/10.1007/s10773-022-05121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05121-x

Keywords

Navigation