Skip to main content
Log in

Multiparty multicast schemes for remote state preparation of complex coefficient quantum states via partially entangled channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The goal of this paper is to further study multiparty multicast quantum communication of different quantum states via partially entangled channels. We employ the partially entangled channels to preform two multicast remote state preparation schemes for transmitting different complex coefficient states from one sender to two receivers synchronously. The first scheme is used to transmit two complex coefficient four-qubit cluster-type states to two receivers with a certain probability. In order to improve success probability of this multicast scheme, we propose another scheme, which is a synchronous transfer of a complex coefficient single-qubit state and a complex coefficient two-qubit state from one sender to two receivers. The success probability of the second scheme reaches 1, and independent of the entanglement degree of the partially entangled channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streltsov, A., Adesso, G., Plebio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridage (2000)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–924 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehiner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  5. Reid, M.D., Drummond, P.D., Bowen, W.P., et al.: The Einstein-Podolsky-Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Enary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridage University Press, Cambridage (1987)

    MATH  Google Scholar 

  8. Peres, A.: Quantum theory: Concepts and Methods. Kluwer, Dordrecht (1993)

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 1818 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  16. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  17. Huang, W.: Improved multiparty quantum key agreement in travelling mode. Sci. China, Physics, Mech. Astron. 59(12), 120311 (2016)

    Article  Google Scholar 

  18. Liu, X.S., LongL, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  19. Liu, B.H., Hu, X.M., Huang, Y.F., et al.: Experimental demonstration of efficient superdense coding in the presence of non-Markovian noise. Europhys. Lett. 114, 10005 (2016)

    Article  ADS  Google Scholar 

  20. Bouwmeester, D., Pan, J.M., Mattle, K., ea al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  21. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Long, G.L., Deng, F.G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  23. Wang, C.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeiliger state. Opt. Commun. 253(1), 15–20 (2005)

    Article  ADS  Google Scholar 

  24. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55, 2481–2489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non- maximally entangled \(\lvert {\chi }\rangle\) state. Chinese Phys. B 23, 010304 (2014)

    Article  ADS  Google Scholar 

  27. Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: Teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  28. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Internal Journal of Theoretical Physics 58, 3065–3072 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74(3), 396–401 (2006)

    Article  MathSciNet  Google Scholar 

  30. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharacters remote rotation sharing with five-particle cluster state. Quantum Information Process. 18, 339 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ye, B.L., Liu, Y.M., Liu, X.S., et al.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30(2), 020301 (2013)

    Article  ADS  Google Scholar 

  32. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  33. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  35. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Flexible deterministic joint remote state preparation of some states. International Journal of Quantum Information 11, 1350044 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum stste. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  38. Zhang, D., Zha, X.W., Duan, Y., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote informatiom concentration via four-particle cluster state and by positive operator-value measurement. International Journal of Modern Physics B 27, 1350091 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration by W state. International Journal of Modern Physics B 27, 1350137 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via W state: reverse of ancilla-free phase-covariant telecloning. Quantum Information Process 12, 3511–3525 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A.K., Wootters, W.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  44. Sheng, Y.B., Deng, F.G.: Deterministic entandlement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  45. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  46. Bennett, C.H., Divincenzo, D.P., Shor, P.W., et al.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

  47. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  48. Nguyen, B.A., Cao, T.B., Nung, V.D.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44, 135506 (2011)

    Article  Google Scholar 

  49. Liang, H.Q., Liu, J.M., Feng, S.S., et al.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Mikami, H., Kobayashi, T.: Remote preparation of qutrit states with biphotons. Phys. Rev. A 75, 022325 (2007)

    Article  ADS  Google Scholar 

  51. Wei, J., Shi, L., Zhu, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17, 70 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D. Wang, Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2015 (2135)

    MATH  Google Scholar 

  53. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  54. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  55. Jeffrey, E., Peters, N.A., Kwiat, P.G.: Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6, 100 (2004)

    Article  ADS  Google Scholar 

  56. Wu, W., Liu, W.T., Ou, B.Q., et al.: Remote stste preparatation with classically correlated state. Opt. Commun. 281, 1751 (2008)

    Article  ADS  Google Scholar 

  57. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remoote preparatation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  58. Wang, X., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)

    Article  MATH  Google Scholar 

  59. Peng, J.Y., Xiang, Y.: Bidirectional remote state preparation in noisy environment assisted by weak measurement. Optics Communications 499, 127285 (2021)

    Article  Google Scholar 

  60. Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum Information Processing 16(8), 1–9 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zha, X.W., Yu, X.Y., Cao, Y.: Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles. International Journal of Theoretical Physics 58, 282–293 (2019)

    Article  ADS  MATH  Google Scholar 

  62. Peng, J.Y., Lei, H.X.: Cyclic Remote State Preparation. Int. J. Theoretical Phys. 60(8), 1593–1602 (2021)

    MathSciNet  MATH  Google Scholar 

  63. Sang, Z.W.: Cyclic controlled joint remote preparation by using a ten-qubit entangled state. Int. J. Theoretical Phys. 58, 255–260 (2019)

    Article  ADS  MATH  Google Scholar 

  64. Zhang, C.Y., Bai, M.Q., Zhou, S.Q.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17, 146 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Sun, S.Y., Zhang, H.S.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19, 120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  66. Sun, S.Y., Zhang, H.S.: Double-direction quantum cyclic controlled remote stste preparation of two-qubit states. Quantum Inf. Process. 2, 211 (2021)

    Article  ADS  Google Scholar 

  67. Jiang, S.X., Zhou, R.G., Xu, R.Q., et al.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Acces 7, 80530–80541 (2019)

    Article  Google Scholar 

  68. Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglemet. Optics Express 26(22), 29296–29310 (2018)

    Article  ADS  Google Scholar 

  69. Yu, Y., Zhao, N., Pei, C.X.: Multicast-based multiparty remote state preparation schemes of two-qubit states. Quantum Inf. Process. 18, 319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  70. Carmichael, H., An, open quanyum systems: Approach to Quantum Optics. Springer, Berlin (1991)

    Google Scholar 

  71. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  72. Zhang, Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Communications in Theoretical Physics 55(2), 244–244 (2011)

    Article  ADS  MATH  Google Scholar 

  73. Chen, N., Quan, D.X., Xu, F.F., et al.: Deterministic joint remote state preparation of arbitrary single- and two-qubit states. Chinese Phys. B 24, 100307 (2015)

    Article  ADS  Google Scholar 

  74. Cao, T.B., Nguyen, V.H., Guyen, N.B.A.: Flexible controlled joint remote preparation of an arbitrary two-qubit state via non-maximally entangled quantum channels. Advances in Natural Sciences: Nanoscience and Nanotechnology 7(2), 025007 (2016)

    ADS  Google Scholar 

  75. Yu, Y., Zhao, N., Pei, C.X.: Multicast-based multiparty remote state preparation schemes of two-qubit states. Quantum Inf. Process. 18, 319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  76. Zhao, N., Li, W.D., Yu, Y.: Quantum broadcast and multicast schemes based on partially entangled channel. IEEE Access 8, 29658–29666 (2020)

    Article  Google Scholar 

  77. Yu, Y.Y., Zhao, N., Pei, C.X., Wei, L.: Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement. Chinese Physics B 30(9), 090302 (2021)

    Article  ADS  Google Scholar 

  78. Zhang, Z.J., Yang, J., Man, Z.X., et al.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33, 133–136 (2005)

    Article  ADS  Google Scholar 

  79. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharingschemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  80. Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient Quantum Cryptography Network without Entanglement and Quantum Memory. Chin. Phys. Lett. 23, 2896–2899 (2006)

    Article  ADS  Google Scholar 

  81. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  82. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  83. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pur quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11071178, No. 11671284), the Comprehensive Professional Reform of Mathematics and Applied Mathematics in the Ministry of Education and Sichuan Province (No.ZG0464), Major frontier project of Sichuan Science and Technology Department (No. 2017JY0197), Fund of Scientific Research and Innovation team of Sichuan Education Department (No. 15TD0027), and Taizhou University high level talents research initiation fund (No. TZXY2017QDJJ011).

Funding

This work is supported by the National Natural Science Foundation of China (No. 11071178, No. 11671284), the Comprehensive Professional Reform of Mathematics and Applied Mathematics in the Ministry of Education and Sichuan Province (No. ZG0464), Major frontier project of Sichuan Science and Technology Department (No. 2017JY0197), Fund of Scientific Research and Innovation team of Sichuan Education Department (No. 15TD0027), and Taizhou University high level talents research initiation fund (No. TZXY2017QDJJ011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-xuan Lei.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Jy., Lei, Hx. Multiparty multicast schemes for remote state preparation of complex coefficient quantum states via partially entangled channels. Int J Theor Phys 61, 130 (2022). https://doi.org/10.1007/s10773-022-05087-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05087-w

Keywords

Navigation