Skip to main content
Log in

Detector-Device-Independent Quantum Key Agreement Based on Single-Photon Bell State Measurement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) is an important primitive of quantum cryptography and has attracted continuous attention. However, in practical QKA, the imperfections of the honest participant’s detectors can be exploited by the dishonest participant to compromise the security of QKA. To remove all the detector-side-channels, we report the first detector-device-independent (DDI) QKA(DDI-QKA) protocol based on single-photon Bell-state measurement. Only the time-bin and path encoding are needed. Complete Bell-state measurement can be achieved based on the time-bin and path encoding. It is shown that the proposed protocol satisfies three conditions of a secure QKA protocol in theory, i.e., correctness, fairness, and security. Furthermore, it is implemented with linear optical elements only and thus it is feasible with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C. H., and Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceed IEEE Int Conf Comput, Syst Signal Process, 175–179. IEEE, New York (1984)

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory. 22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  4. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  ADS  Google Scholar 

  5. Naresh, V.S., Reddi, S.: Multiparty quantum key agreement with strong fairness property. Comput Syst Sci Eng. 35(6), 457–465 (2020)

    Article  Google Scholar 

  6. Naresh, V.S., Nasralla, M.M., Reddi, S., García-Magariño, I.: Quantum Diffie-Hellman extended to dynamic quantum group key agreement for e-Healthcare multi-agent systems in smart cities. Sensors. 20(14), 3940 (2020)

    Article  ADS  Google Scholar 

  7. Tsai, C., Hwang, T.: On Quantum Key Agreement Protocol. Technical Report, C-S-I-E, NCKU, Taiwan (2009)

    Google Scholar 

  8. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  9. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zhu, H.F., Wang, C.N., Li, Z.X.: Semi-honest three-party mutual authentication quantum key agreement protocol based on GHZ-like state. Int. J. Theor. Phys. 60, 293–303 (2021)

    Article  MathSciNet  Google Scholar 

  12. Zhu, H.F., Liu, T.H., Wang, C.N.: A one-round quantum mutual authenticated key agreement protocol with semi-honest server using three-particle entangled states. Int. J. Theor. Phys. 60, 929–943 (2021)

    Article  MathSciNet  Google Scholar 

  13. Huang, X., Zhang, S.-B., Chang, Y., Qiu, C., Liu, D.-M., Hou, M.: Quantum key agreement protocol based on quantum search algorithm. Int. J. Theor. Phys. 60, 838–847 (2021)

    Article  MathSciNet  Google Scholar 

  14. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mohajer, R., Eslami, Z.: Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 16(8), 197 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol Secure Against Collusion Attacks. Quantum Inf. Process. 16, 170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yang, Y.G., Li, B.R., Kang, S.Y., et al.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18, 77 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhou, N.-R., Zhu, K.-N., Wang, Y.-Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  21. Tang, J., Shi, L., Wei, J.H.: Controlled quantum key agreement based on maximally three-qubit entangled states. Modern Phys Lett B. 34(18), 2050201 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, L., Li, Z.: A verifiable multiparty quantum key agreement based on bivariate polynomial. Inf. Sci. 521, 343–349 (2020)

    Article  MathSciNet  Google Scholar 

  23. Lin, S., Zhang, X., Guo, G.-D., Wang, L.-L., Liu, X.-F.: Multiparty quantum key agreement. Phys. Rev. A. 104, 042421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., et al.: Science (New York, N.Y.). 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  25. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)

    Article  Google Scholar 

  27. He, Y.F., Ma, W.P.: Two robust quantum key agreement protocols based on logical GHz states. Mod. Phys. Lett. B31(3), 1750015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Gao, H., Chen, X.G., Qian, S.R.: Two-party quantum key agreement protocols under collective noise channel. Quantum Inf. Process. 17, 140 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, S.-S., Jiang, D.-H., Xu, G.-B., Zhang, Y.-H., Liang, X.-Q.: Quantum key agreement with Bell states and Cluster states under collective noise channels. Quantum Inf. Process. 18, 190 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  31. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography by tailored bright illumination. Nature Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  32. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)

    Article  ADS  Google Scholar 

  33. Gerhardt, I., Liu, Q., Lamas-Linares, A., et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349(2011)

  34. Qin, H., Kumar, R., Makarov, V., et al. Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312(2018)

  35. Mayers, D., Yao, A.-C.: in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS98) (IEEE Computer Society, Washington, DC, 1998) (1998)

  36. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  37. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  38. Liang, W.Y., Li, M., Yin, Z.Q., et al.: A simple implementation of quantum key distribution based on single-photon Bell-state measurement. Phys. Rev. A 92, 012319 (2015)

    Article  ADS  Google Scholar 

  39. Qi, B.: Trustworthiness of detectors in quantum key distribution with untrusted detectors. Phys. Rev. A. 91, 020303(R) (2015)

    Article  ADS  Google Scholar 

  40. Aharonov, D., Ta-Shma, A., Vazirani, U. V., and Yao, A. C.: Quantum bit escrow. Proceedings of the thirty-second annual ACM symposium on Theory of computing (ACM, 2000), pp.705–714

  41. Zhao, L., Yin, Z., Wang, S., Chen, W., Chen, H., Guo, G., Han, Z.: Measurement-device-independent quantum coin flipping. Phys. Rev. A. 92, 062327 (2015)

    Article  ADS  Google Scholar 

  42. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635(2000)

  43. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202104); the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Lv, XL., Gao, S. et al. Detector-Device-Independent Quantum Key Agreement Based on Single-Photon Bell State Measurement. Int J Theor Phys 61, 50 (2022). https://doi.org/10.1007/s10773-022-05052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05052-7

Keywords

Navigation