Skip to main content
Log in

An Improved Quantum Private Set Intersection Protocol Based on Hadamard Gates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Liu and Yin (Int. J. Theor. Phys. 60, 2074-2083 (2021)) proposed a two-party private set intersection protocol based on quantum Fourier transform. We find the participant can deduce the other party’s private information, which violates the security requirement of private set computation. In order to solve this problem, an improved private set intersection protocol based on Hadamard gate is proposed. Firstly, the more feasible Hadamard gates are used to perform on the original n qubits instead of the quantum Fourier transform, which may reduce the difficulty of implementation. In addition, through the exclusive OR calculation, the participant’s private information is randomly chosen and encoded on the additional n qubits, which prevents participants from obtaining the result of the difference set Sdiff, and then avoids the internal leakage of private information. Finally, the correctness and security analysis are conducted to show the proposed protocol can guarantee the correctness of computation result as well as resist outside attacks and participant internal attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. Symp. Found. Comput. Sci. (FOCS). 23, 160–164 (1982)

    MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. Symp. Found. Comput. Sci. (FOCS). 35, 124–134 (1994)

    MathSciNet  Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  4. Xu, Y.S., Liu, W.J., Yu, W.: Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms. Quantum Inf. Process. 20(4), 131 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  5. Liu, W.J., Xu, Y., Yang, C.N., et al.: An efficient and secure arbitrary N-Party quantum key agreement protocol using bell states. Int. J. Theor. Phys. 57(1), 195–207 (2018)

    Article  MathSciNet  Google Scholar 

  6. Liu, W.J., Li, C.T., Zheng, Y., et al.: Quantum Privacy-Preserving price E-Negotiation. Int. J. Theor. Phys. 58(10), 3259–3270 (2019)

    Article  MathSciNet  Google Scholar 

  7. Wooters, W.K., Zurek, W.K.: Quantum no-cloning theorem. Nature, 299 (1982)

  8. Folland, G.B., Sitaram, A.: The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  9. Mayers, D.: Unconditional security in quantum cryptography. ACM. https://doi.org/10.1145/382780.382781 (1998)

  10. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for Private Set Intersection. Quantum Inf. Process. 15(1), 363–371 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cheng, X., Guo, R., Chen, Y.: Cryptanalysis and improvement of a quantum private set intersection protocol. Quantum Inf. Process. 16(2), 37 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Maitra, A.: Quantum secure two-party computation for set intersection with rational players. Quantum Inf. Process. 17(8), 197 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Debnath, S.K., Dey, K., Kundu, N., et al.: Feasible private set intersection in quantum domain. Quantum Inf. Process. 20(1), 41 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, W., Yin, H.W.: A novel quantum protocol for private set intersection. Int. J. Theor. Phys. 60, 2074–2083 (2021)

    Article  MathSciNet  Google Scholar 

  15. Shi, R.H.: Quantum Private Computation of Cardinality of Set Intersection and union.The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics. https://doi.org/10.1140/epjd/e2018-90380-7 (2018)

  16. Shi, R.H.: Efficient quantum protocol for private set intersection cardinality. IEEE Access. 99, 1–1 (2018)

    Google Scholar 

  17. Shi, R.H., Zhang, M.: A feasible quantum protocol for private set intersection cardinality. IEEE Access. 7, 72105–72112 (2019)

    Article  Google Scholar 

  18. Liu, B., Zhang, M.W., Shi, R.H.: Quantum secure multi-party private set intersection cardinality. Int. J. Theor. Phys. 59, 1992–2007 (2020)

    Article  MathSciNet  Google Scholar 

  19. Shi, R.H., Mu, Y., Zhong, H., Zhang, S.: Quantum oblivious set-member decision protocol. Phys. Rev. A. 92(2), 5 (2015)

    Article  Google Scholar 

  20. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inform. Comput. 7(4), 329–334 (2007)

    Article  MathSciNet  Google Scholar 

  21. Song, T.T., Wen, Q.Y., Gao, F., et al.: Participant attack and improvement to multiparty quantum secret sharing based on GHZ states. Int. J. Theor. Phys. 52(1), 293–301 (2013)

    Article  Google Scholar 

  22. Li, L., Shi, R.H.: A novel and efficient quantum private comparison scheme. J. Korean Phys. Soc. 75(1), 15–21 (2019)

    Article  ADS  Google Scholar 

  23. Deng, F.G., Han, X., et al.: Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 73(4), 49901–49901 (2006)

    Article  ADS  Google Scholar 

  24. Peev, M., Pacher, C., Lorunser, T., et al.: Response to “Vulnerability of ’A novel protocol-authentication algorithm ruling out a man-in-the-middle attack in quantum cryptography’ ”. Int. J. Quantum Inf. 07(7), 1401 (2009)

    Article  Google Scholar 

  25. Kye, W.H., Kim, C.M., Kim, M.S., et al.: Security against the invisible photon attack for the quantum key distribution with blind polarization bases. Phys. Rev. Lett. 95(4), 040501 (2005)

    Article  ADS  Google Scholar 

  26. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  27. Ma, X., Qi, B., Zhao, Y., et al.: Practical decoy state for quantum key distribution. Phys. Rev. A. 72(1), 1–127 (2005)

    Article  Google Scholar 

  28. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 40305–040305 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liu, W.J., Chen, Z.Y., Liu, J.S., et al.: Full-Blind Delegating private quantum computation. CMC-Computers Materials and Continua 56(2), 211–223 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editors for their comments that improved the quality of this paper. This work is supported by the National Natural Science Foundation of China (62071240, 61802002), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Liu.

Ethics declarations

Ethics statement

Articles do not rely on clinical trials.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Human and animal participants

All submitted manuscripts containing research which does not involve human participants and/or animal experimentation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Li, WB. & Wang, HB. An Improved Quantum Private Set Intersection Protocol Based on Hadamard Gates. Int J Theor Phys 61, 53 (2022). https://doi.org/10.1007/s10773-022-05048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05048-3

Keywords

Navigation