Skip to main content
Log in

Multiresolution Quantum Field Theory in Light-Front Coordinates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyse the use of wavelet transform in quantum field theory models written in light-front coordinates. In a recent paper (Phys. Rev. D 101: 096004 2020) Polyzou used x+ variable as ‘time’, and applied wavelet transform to the ‘spatial’ coordinates only. This makes the theory asymmetric with respect to space and time coordinates. In present paper we generalise the concept of continuous causal path, which is the basis of path integration, to the sequences of causally ordered spacetime regions, and present evaluation rules for Feynman path integrals over such sequences in terms of wavelet transform. Both the path integrals and the wavelet transform in our model are symmetric with respect to the light-front variables (x+,x). The definition of a spacetime event in our generalization is very much like the definition of event in probability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polyzou, W.: Phys. Rev. D 101, 096004 (2020). https://doi.org/10.1103/PhysRevD.101.096004

    Article  ADS  MathSciNet  Google Scholar 

  2. Dirac, P.: Physikalische Zeitschrift der Sowietunion 3, 64 (1933)

    Google Scholar 

  3. Feynman, R.P.: Phys. Rev. 76, 769 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  4. Altaisky, M.V.: IOP Conf. Ser. 173, 893 (2003)

    Google Scholar 

  5. Altaisky, M.V.: Phys. Rev. D 81, 125003 (2010). https://doi.org/10.1103/PhysRevD.81.125003

    Article  ADS  Google Scholar 

  6. Altaisky, M.V., Kaputkina, N.E.: Phys. Rev. D 88, 025015 (2013). https://doi.org/10.1103/PhysRevD.88.025015

    Article  ADS  Google Scholar 

  7. Altaisky, M.V.: Phys. Rev. D 93, 105043 (2016). https://doi.org/10.1103/PhysRevD.93.105043

    Article  ADS  Google Scholar 

  8. Kolmogorov, A.: Foundations of the Theory of Probability, 2nd edn. Dover Publications (2018)

  9. Kogut, J., Soper, D.: Phys. Rev. D 1, 2901 (1970). https://doi.org/10.1103/PhysRevD.1.2901

    Article  ADS  Google Scholar 

  10. Goupillaud, P., Grossmann, A., Morlet, J.: Geoexploration 23, 85 (1984)

    Article  Google Scholar 

  11. Handy, C.M., Murenzi, R.: Phys. Lett. A 248, 7 (1998)

    Article  ADS  Google Scholar 

  12. Freysz, E., Pouligny, B., Argoul, F., Arneodo, A.: Phys. Rev. Lett. 64, 745 (1990)

    Article  ADS  Google Scholar 

  13. Daubechies, I.: Comm. Pure. Apl. Math. 41, 909 (1988)

    Article  Google Scholar 

  14. Carey, A.L.: Bull. Austr. Math. Soc. 15, 1 (1976)

    Article  ADS  Google Scholar 

  15. Duflo, M., Moore, C.C.: J. Func. Anal. 21, 209 (1976)

    Article  Google Scholar 

  16. Beylkin, G., Coifman, R., Rokhlin, V.: Comm. Pure. Apl. Math. 44, 141 (1991)

    Article  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphie (1992)

    Book  Google Scholar 

  18. Mallat, S.: preprint GRASP Lab. Dept. of Computer an Information Science, Univ. of Pensilvania (1986)

    Google Scholar 

  19. Ginzburg, V., Landau, L., Eksp, Z.h.: Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  20. Wilson, K.G., Kogut, J.: Phys. Rep. 12, 75 (1974). http://www.sciencedirect.com/science/article/pii/0370157374900234

    Article  ADS  Google Scholar 

  21. Berges, J., Tetradis, N., Wetterich, C.: Phys. Rep. 363, 223 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wetterich, C.: Phys. Lett. B 301, 90 (1993). ISSN 0370-2693

    Article  ADS  Google Scholar 

  23. Altaisky, M.V., Raj, R.: Phys. Rev. D 102, 125021 (2020). https://doi.org/10.1103/PhysRevD.102.125021

    Article  ADS  MathSciNet  Google Scholar 

  24. Gorodnitskiy, E., Perel, M.: J. Math. Phys. 45, 385203 (2012)

    Google Scholar 

  25. Blokhintsev, D: Space and Time in Microworld. Springer (1973)

  26. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  27. Witten, E.: Rev. Mod. Phys. 92, 045004 (2020). https://doi.org/10.1103/RevModPhys.92.045004

    Article  ADS  Google Scholar 

  28. Christensen, J.D., Crane, L.: J. Math. Phys 46, 122502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dable-Heath, E., Fewster, C.J., Rejzner, K., Woods, N.: Phys. Rev. D 101, 065013 (2020). https://doi.org/10.1103/PhysRevD.101.065013

    Article  ADS  MathSciNet  Google Scholar 

  30. Mac Lane, S., Moerdijk, I: Sheaves in Geometry and Logic, a First Introduction to Topos Theory. Springer (1992)

  31. Kadanoff, L.P.: Physics 2, 263 (1966)

    Article  Google Scholar 

  32. Altaisky, M.V., Hnatich, M., Kaputkina, N.E.: Phys. Rev. E 98, 033116 (2018). https://doi.org/10.1103/PhysRevE.98.033116

    Article  ADS  Google Scholar 

  33. Chen, G., Li, Y., Tuchin, K., Vary, J.P.: Phys. Rev. C 100, 025208 (2019)

    Article  ADS  Google Scholar 

  34. Berges, J., Heller, M.P., Mazeliauskas, A., Venugopalan, R.: Rev. Mod. Phys. 93, 035003 (2021)

    Article  ADS  Google Scholar 

  35. Chabysheva, S.S., Hiller, J.R.: Phys. Rev. D 102, 116010 (2020). https://doi.org/10.1103/PhysRevD.102.116010

    Article  ADS  MathSciNet  Google Scholar 

  36. Restrepo, J.M., Leaf, G.K.: Int. J. Numer. Methods Eng. 40, 3557 (1997)

    Article  Google Scholar 

  37. Bulut, F.: Appl. Math. Lett. 53, 1 (2016)

    Article  MathSciNet  Google Scholar 

  38. Battle, G: Wavelets and Renormalization Group. World Scientific (1999)

  39. Altaisky, M., Kaputkina, N.: Russian Phys. J. 55, 1177 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. Miyaji, M., Takayanagi, T., Watanabe, K.: Phys. Rev. D 95, 066004 (2017). https://doi.org/10.1103/PhysRevD.95.066004

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Profs. J.-P. Gazeau, M.Hnatich, S.Mikhailov, M.Perel, and W.N.Polyzou for useful comments and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Altaisky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaisky, M.V., Kaputkina, N.E. & Raj, R. Multiresolution Quantum Field Theory in Light-Front Coordinates. Int J Theor Phys 61, 46 (2022). https://doi.org/10.1007/s10773-022-05029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05029-6

Keywords

Navigation