Skip to main content
Log in

The Entanglement Properties of Superposition of Fermionic Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The entanglement properties of pure two-partite quantum systems, constructed from fermionic spin coherent states, is investigated for particles of \( j=\frac{1}{2} \), \( \frac{3}{2} \) and\( \frac{5}{2} \)spins. The results show that entanglement of superposition of two-partite fermionic coherent states (SFCS) increases as j is increased. The amount of the entanglement is measured by I-Concurrence and D-Concurrence. Depending on coherent parameters, it is concluded that the maximal entanglement or no entanglement at all is reached for both entanglement measures IC and DC. We illustrated that by augmenting the spin of the fermionic coherent states (j) and, consequently, increasing their dimension d = 2 j + 1, the entanglement of the SFCS states sharply rises to its maximum value around the cartesian origin and then will decline to its minimum value mildly. Our results indicate no entanglement sudden death phenomenon under the examined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Cambridge university press. (2010)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Ekert, A., Jozsa, R.: Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. van Enk, S.J., Hirota, O.: Entangled coherent states: Teleportation and decoherence. Phys. Rev. A. 64, 022313 (2001)

    Article  ADS  Google Scholar 

  7. Chamgordani, M.A., Koppelaar, H.: Int. J. Innov. Technol. Manag. 7, 0702107 (2018)

    Google Scholar 

  8. Chamgordani, M.A., Koppelaar, H.: Entanglement Increase in Higher Dimensions. Int. J. Innov. Technol. Manag. 7, 2319–1334 (2018)

    Google Scholar 

  9. Glauber, R.J.: The Quantum Theory of Optical Coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Perelomov, Springer Verlag, (1986)

    Google Scholar 

  11. Perelomov, A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Bo-sture, Skagerstam, World Scientific, 1985

    Google Scholar 

  13. Inomata, A., Kuratsuji, H., Christopher, C.G.: World Scientific. (1992)

  14. Eleuch, H.: Autocorrelation function of microcavity-emitting field in the linear regime. Eur. Phys. J. D. 48, 139–143 (2008)

    Article  ADS  Google Scholar 

  15. Eleuch, H.: Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D. 49, 391–395 (2008)

    Article  ADS  Google Scholar 

  16. Zhong, Z.R., Sheng, J.Q., Lin, L.H., Zheng, S.B.: Quantum nonlocality for entanglement of quasiclassical states. Opt. Lett. 44, 1726–1729 (2019)

    Article  ADS  Google Scholar 

  17. Lutchyn, R.M., Cywiński, Ł., Nave, C.P., Das Sarma, S.: Quantum decoherence of a charge qubit in a spin-fermion model. Phys. Rev. B. 78, 024508 (2008)

    Article  ADS  Google Scholar 

  18. Wilson, D., Jeong, H., Kim, M.S., Mod, J.: Quantum nonlocality for a mixed entangled coherent state. Opt. 49, 851–864 (2002)

    MATH  Google Scholar 

  19. Jeong, H., Son, W., Kim, M.S., Ahn, D., Brukner, C.: Quantum nonlocality test for continuous-variable states with dichotomic observables. Phys. Rev. A. 67, 012106 (2003)

    Article  ADS  Google Scholar 

  20. Park, C.Y., Jeong, H.: Bell-inequality tests using asymmetric entangled coherent states in asymmetric lossy environments. Phys. Rev. A. 91, 042328 (2015)

    Article  ADS  Google Scholar 

  21. Berrada, K., Chafik, A., Eleuch, H., Hassouni, Y., Nord, Z.U., Phys, J.: A. 42, 1–13 (2009)

    Google Scholar 

  22. Salimi, S., Mohammadzade, A.: Study of Concurrence and D-Concurrence on Two-Qubits Resulted in Pair Coherent States in Language of SU(2) Coherent States. Commun. Theor. Phys. 56, 241–246 (2011)

    Article  MATH  ADS  Google Scholar 

  23. Berrada, K., El Baz, M., Saif, F., Hassouni, Y., Mnia, S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A. 42, 285306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Berrada, K., Mohammadzade, A., Abdel-Khalek, S., Eleuch, H., Salimi, S.: Nonlocal correlations for manifold quantum systems: Entanglement of two-spin states. Physica. 45, 21–27 (2012)

    Article  Google Scholar 

  25. Maleki, Y., Khashami, F., Mousavi, Y.: Entanglement of Three-spin States in the Context of SU(2) Coherent States. Int. J. Theor. Phys. 54, 210–218 (2014)

    Article  MATH  Google Scholar 

  26. Wu, H., et al.: Multiple concurrence of multi-partite quantum system. Int. J. Quantum Inf. 8, 1169–1177 (2010)

    Article  MATH  Google Scholar 

  27. Chamgordani, M.A., Naderi, N., Koppelaar, H., Bordbar, M.: The entanglement dynamics of superposition of fermionic coherent states in Heisenberg spin chains. Int. J. Mod. Phys. B. 33, 1950180 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Zhang, L., Silberhorn, C., Walmsley, I.: Secure Quantum Key Distribution using Continuous Variables of Single Photons. Phys. Rev. Lett. 100, 110504 (2008)

    Article  ADS  Google Scholar 

  29. Bechmann-Pasquinucci, H., Peres, A.: Quantum Cryptography with 3-State Systems. Phys. Rev. Lett. 85, 3313–3316 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Bechmann-Pasquinucci, H., Tittel, W.: Phys. Rev. A. 61, 62306–62308 (2000)

    Article  MathSciNet  Google Scholar 

  31. Clauser, J.F., Horne, M.A., Shimony, A.: Phys. Rev. Lett. 23(880), 880–884 (1969)

    Article  ADS  Google Scholar 

  32. A Mohamed, A.-B., Joshi, A., Hassan, S.S.: J. Phys. A: Math. Theor. 47, 335301 (2014)

    Article  Google Scholar 

  33. Luo, S.: Quantum discord for two-qubit systems. Phys Rev. A. 77, 042303 (2008)

    Article  ADS  Google Scholar 

  34. Luo, S., Fu, S.: Europhys. Lett. 92(20004), 20004 (2010)

    Article  ADS  Google Scholar 

  35. Ollivier, H., Zurek, W.H.: Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  MATH  ADS  Google Scholar 

  36. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Dakic, B., Vedral, V., Brukner Phys, C.: Necessary and Sufficient Condition for Nonzero Quantum Discord. Rev. Lett. 105, 190502 (2010)

    Article  MATH  ADS  Google Scholar 

  38. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A. 82, 034302 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Mohamed, A.-B.A., Eleuch, H.: Phys. Scr. 92, 065101 (2017)

    Article  ADS  Google Scholar 

  40. Bordbar, M., Naderi, N., Alimoradi Chamgordani, M.: The relation of entanglement to the number of qubits and interactions between them for different graph states. Indian J Phys. 95, 901–909 (2021)

    Article  ADS  Google Scholar 

  41. Naderi, N., Bordbar, M., Hasanvand, F.K., Alimoradi, M.: Chamgordani. Optik (Stuttg.). 247(167948), 167948 (2021)

    Article  ADS  Google Scholar 

  42. Eleuch, H., Rotter, I.: Resonances in open quantum systems. Phys. Rev. A. 95, 022117 (2017)

    Article  ADS  Google Scholar 

  43. Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Phys. Rep. 762, 1–100 (2018)

    MathSciNet  ADS  Google Scholar 

  44. Rungta, P., Budek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Phys. Rev. A. 64, 1–5 (2001)

    Article  Google Scholar 

  45. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A. 67, 12307 (2003)

    Article  ADS  Google Scholar 

  46. Ma, Z.H., Yuan, W.G., Bao, M.L., Zhang, X.D.: Quantum Inf. Comput. 11, 70–78 (2011)

    MathSciNet  Google Scholar 

  47. Sanders, B.C.: Review of entangled coherent states. J. Phys. A. 45, 244002 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A Gen. Phys. 4, 313–323 (1971)

    Article  ADS  Google Scholar 

  49. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Beam splitting and entanglement generation: excited coherent states. Quantum Inf. Process. 12, 69–82 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alimoradi Chamgordani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1a

Appendix 1a

The IC of entanglement of state (3) takes a form as follows

$$ {\displaystyle \begin{array}{c} IC=\sqrt{2\left(1-{\rho}_{00}^2-{\rho}_{11}^2-{\rho}_{01}{\rho}_{10}-{\rho}_{10}{\rho}_{01}\right)}=\sqrt{2-2{\left({\rho}_{00}+{\rho}_{11}\right)}^2+4\;{\rho}_{00}\;{\rho}_{11}-4\;{\rho}_{01}{\rho}_{10}}\Rightarrow \\ {} IC=2\sqrt{\rho_{00}\;{\rho}_{11}-{\rho}_{01}{\rho}_{10}};{\rho}_{00}+{\rho}_{11}=1,\end{array}} $$
(13)

Using (9) and (13) we have.

The determinant of I − ρA (with I the identity matrix) is determined

$$ Det\left(I-{\rho}_A\right)=\left|\begin{array}{cc}1-{\rho}_{00}& {\rho}_{10}\\ {}{\rho}_{01}& 1-{\rho}_{11}\end{array}\right|=\left(1-{\rho}_{00}\right)\left(1-{\rho}_{11}\right)-{\rho}_{01}{\rho}_{10}={\rho}_{11}{\rho}_{00}-{\rho}_{01}{\rho}_{10};\kern0.36em {\rho}_{11}+{\rho}_{00}=1. $$
(15)

Using (15) and (10) we obtain

$$ \mathrm{DC}=\sqrt{\rho_{00}\;{\rho}_{11}-{\rho}_{01}{\rho}_{10}}. $$
(16)

Where

$$ {\displaystyle \begin{array}{c}{\rho}_{00}={\left|A\prime \prime +B\prime \prime \right|}^2+{\left|\beta A\prime \prime +\gamma B\prime \prime \right|}^2,\kern1.56em {\rho}_{01}=\left(A\hbox{'}\hbox{'}+B\hbox{'}\hbox{'}\right)\kern0.24em \left(\alpha A\hbox{'}\hbox{'}+\delta B\hbox{'}\hbox{'}\right)+\left(\beta A\hbox{'}\hbox{'}+\gamma B\hbox{'}\hbox{'}\right)\left(\alpha \beta A\hbox{'}\hbox{'}\ast +\gamma \delta B\hbox{'}\hbox{'}\ast \right),\\ {}{\rho}_{11}={\left|\alpha A\prime \prime +\delta B\prime \prime \right|}^2+{\left|\alpha \beta A\prime \prime +\delta \gamma B\prime \prime \right|}^2,{\rho}_{10}=\left(\beta A\hbox{'}\hbox{'}\ast +\gamma B\hbox{'}\hbox{'}\ast \right)\left(\alpha \beta A\hbox{'}\hbox{'}+\gamma \delta B\hbox{'}\hbox{'}\right)+\left(A\hbox{'}\hbox{'}\ast +B\hbox{'}\hbox{'}\ast \right)\left(\alpha A\hbox{'}\hbox{'}+\delta B\hbox{'}\hbox{'}\right).\end{array}} $$
(12)

1.1 Appendix 1b

by defining\( a={P}_{-\frac{3}{2},-\frac{3}{2}} \), \( b={P}_{-\frac{3}{2},-\frac{1}{2}} \),…,\( p={P}_{\frac{3}{2},\frac{3}{2}} \). Then we have

$$ {\displaystyle \begin{array}{c}{\rho}_A=\\ {}\left(\begin{array}{cccc}{d}^2+{h}^2+{l}^2+{p}^2& d{c}^{\ast }+h{g}^{\ast }+l{k}^{\ast }+p{o}^{\ast }& d{b}^{\ast }+h{f}^{\ast }+l{j}^{\ast }+p{n}^{\ast }& d{a}^{\ast }+h{e}^{\ast }+l{i}^{\ast }+p{m}^{\ast}\\ {}c{d}^{\ast }+g{h}^{\ast }+k{l}^{\ast }+o{p}^{\ast }& {c}^2+{g}^2+{k}^2+{o}^2& c{b}^{\ast }+g{f}^{\ast }+k{j}^{\ast }+o{n}^{\ast }& c{a}^{\ast }+g{e}^{\ast }+k{i}^{\ast }+o{m}^{\ast}\\ {}b{d}^{\ast }+f{h}^{\ast }+j{l}^{\ast }+n{p}^{\ast }& b{d}^{\ast }+f{h}^{\ast }+j{l}^{\ast }+n{p}^{\ast }& {b}^2+{f}^2+{j}^2+{n}^2& b{a}^{\ast }+f{e}^{\ast }+j{i}^{\ast }+n{m}^{\ast}\\ {}a{d}^{\ast }+e{h}^{\ast }+i{l}^{\ast }+m{p}^{\ast }& a{c}^{\ast }+e{g}^{\ast }+i{k}^{\ast }+m{o}^{\ast }& a{b}^{\ast }+e{f}^{\ast }+i{j}^{\ast }+m{n}^{\ast }& {a}^2+{e}^2+{i}^2+{m}^2\end{array}\right)\end{array}}=\left(\begin{array}{cccc}q& u& v& w\\ {}{u}^{\ast }& r& z& x\\ {}{v}^{\ast }& {z}^{\ast }& s& y\\ {}{w}^{\ast }& {x}^{\ast }& {y}^{\ast }& t\end{array}\right). $$

If one obtains \( {\rho}_A^2 \), the four diagonal elements (of \( {\rho}_A^2 \)) are written as follows

$$ {q}^2+{\left|\;u\right|}^2+{\left|\kern0.1em v\right|}^2+{\left|\;w\right|}^2,\kern0.36em {r}^2+{\left|\;u\right|}^2+{\left|\;x\right|}^2+{\left|\;z\right|}^2,\kern0.36em {s}^2+{\left|\;v\right|}^2+{\left|\;y\right|}^2+{\left|\;z\right|}^2,\kern0.36em {t}^2+{\left|\;x\right|}^2+{\left|\;y\right|}^2+{\left|\;w\right|}^2 $$
(18)

Using relations (9) and (19) we obtain the following expression for IC

$$ \mathrm{IC}=\sqrt{2}{\left(1-\left[{q}^2+{r}^2+{s}^2+{t}^2+2\;{\left|\;u\right|}^2+2{\left|\;v\right|}^2+2{\left|\;w\right|}^2+2{\left|\;x\right|}^2+2{\left|\;y\right|}^2+2{\left|\;z\right|}^2\right]\right)}^{\frac{1}{2}}. $$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamgordani, M.A. The Entanglement Properties of Superposition of Fermionic Coherent States. Int J Theor Phys 61, 33 (2022). https://doi.org/10.1007/s10773-022-05020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05020-1

Keywords

Navigation