Skip to main content
Log in

A Controlled Asymmetric Quantum Conference

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work we introduce a three-party quantum conference where the involved parties initially hold asymmetric quantum information which are finally shared amongst themselves by the execution of a quantum communication protocol. The three conferencing parties along with a controller are connected amongst themselves through a multipartite quantum entanglement which is used as quantum resource in the protocol. The role of the controller is confined to a final action without which the conference can not be performed. The present work is an instance of applications of multipartite entangled resources in communication problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  5. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  6. Yan, F., Yan, T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010)

    Article  Google Scholar 

  7. Han, L.F., Xu, H.F.: Probabilistic and controlled teleportation of an arbitrary two-qubit state via one dimensional five-qubit cluster-class state. Int. J. Theor. Phys. 51(8), 2540–2545 (2012)

    Article  MATH  Google Scholar 

  8. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quant. Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  9. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  10. Zhu, P.H.: Perfect teleportation of an arbitrary two-qubit state via GHZ-like states. Int. J. Theor. Phys. 53, 4095–4097 (2014)

    Article  MATH  Google Scholar 

  11. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  12. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quant. Inf. Process. 15, 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quant. Inf. Process. 15, 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Choudhury, B.S., Samanta, S: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  17. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  18. Wang, D., Liu, Y-m., Zhang, Z-j.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)

    Article  ADS  Google Scholar 

  19. Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quant. Inform. 8(8), 1265–1275 (2010)

    Article  MATH  Google Scholar 

  20. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011)

    Article  MATH  Google Scholar 

  21. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf. Process. 18, 118 (2019)

    Article  ADS  MATH  Google Scholar 

  23. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  24. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B-At. Mol. Opt. 42(12), 125501 (2009)

    Article  ADS  Google Scholar 

  25. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853–5855 (2011)

    Article  ADS  Google Scholar 

  26. Gao, X., Zhang, Z., Sheng, B.: Long-distance teleportation based on a selected receiver in a quantum network. J. Modern Opt. 65, 14,1698–1704 (2018)

    Article  MathSciNet  Google Scholar 

  27. Choudhury, B.S., Samanta, S.: A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. Int. J. Quantum Inf. 16(3), 1850026 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, S., Zhang, H.: Quantum double direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19, 120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. An, N.B., Choudhury, B.S., Samanta, S.: Two-way remote preparations of inequivalent quantum states under a common control. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-020-04657-0 (2020)

  30. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum Inf. Process. 17(7), 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  33. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    Article  MATH  Google Scholar 

  34. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    Article  MATH  Google Scholar 

  35. Li, Y.-h., Nie, L.-p., Li, X.-l., Sang, M.-h.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  MATH  Google Scholar 

  36. Choudhury, B.S., Samanta, S: Asymmetric bidirectional 3 and 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. B 14(5), 893–897 (2005)

    Article  Google Scholar 

  38. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  39. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  40. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  41. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  43. Riebe, M., Hffner, H., Roos, C.F., Hnsel, W., Benhelm, J., Lancaster, G.P.T., Krber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2006)

    Article  ADS  Google Scholar 

  44. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  45. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics 8, 770–774 (2014)

    Article  ADS  Google Scholar 

  46. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)

    Article  ADS  Google Scholar 

  47. Buchleitner, A., Viviescas, C., Tiersch, M.: Entanglement and Decoherence. Foundations and Modern Trends. Springer (2009)

  48. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Physics, 8. https://doi.org/10.1038/NPHYS2178 (2012)

  49. Marzolino, U., Buchleitner, A.: Performances and robustness of quantum teleportation with identical particles. Proc. R. Soc. A 472, 20150621 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kim, K.I., Pak, M.C., Kim, T.H.: Decoherence of multipartite entanglement states under amplitude-damping environment in non-inertial frames. Eur. Phys. J. D 74, 124 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The valuable suggestions of the reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Samanta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Samanta, S. A Controlled Asymmetric Quantum Conference. Int J Theor Phys 61, 14 (2022). https://doi.org/10.1007/s10773-022-05019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05019-8

Keywords

Navigation