Skip to main content
Log in

Renormalized Spectrum of Quasiparticle in Two States, Strongly Interacting with Multi-Mode Polarization Phonons at T = 0K

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Within unitary transformed Hamiltonian of Frohlich type, the exact renormalized energy spectrum of a system consisting of a two-state quasiparticle strongly interacting with multi-mode polarization phonons at T = 0K is obtained using the method of retarded Green’s functions. The exact analytical expressions for the average numbers of phonons in the main and all satellite states of the system are presented. It is shown that renormalized spectrum of the system is stationary and discrete, regardless of the number of phonon modes (τ). It contains the main level and (2τ − 1) groups of an infinite number of satellite levels corresponding to the complexes of strongly bound quasiparticle with all phonons of all possible combinations of modes. The main and first satellite levels are non-degenerate and the rest of the satellite part of the spectrum depends significantly on the ratios between the energies of the phonon modes. If the energies of all modes are multiples of the smallest one, then the spectrum is equidistant and degenerate. If at least one of the modes is not a multiple of the other, and the others are multiples of each other, then the spectrum is not equidistant and partially degenerate. If the ratios are irrational numbers, then the spectrum is neither degenerate nor equidistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code Availability

The work is performed under Phyton 3 by using the code which is written by co-authors of the paper.

References

  1. Mahan, G.D.: Many-Particle Physics, 3rd edn. Plenum, New York (2000)

    Book  Google Scholar 

  2. Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511534898

    Book  Google Scholar 

  3. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (2012)

    MATH  Google Scholar 

  4. Harper, P.G.: The effects of the electron - lattice interaction on the free-carrier magneto-optics of semiconductors. Proc. Phys. Soc. 92, 793 (1967)

    Article  ADS  Google Scholar 

  5. Toyozawa, Y., Hermanson, J.: Exciton-phonon bound state: a new quasiparticle. Phys. Rev. Lett. 21, 1637 (1968). https://doi.org/10.1103/PhysRevLett.21.1637

    Article  ADS  Google Scholar 

  6. Levinson, Y.B., Rashba, E.I.: Threshold phenomena and bound states in the polaron problem. Sov. Phys. Usp. 16, 892 (1974). https://doi.org/10.1070/PU1974v016n06ABEH004097

    Article  ADS  Google Scholar 

  7. Davydov, A.S.: Theory of Solids. Moscow, Nauka (1976)

    Google Scholar 

  8. Agranovich, V.M.: Theory of exitons. Moscow, Nauka (1968)

    Google Scholar 

  9. Toyozawa, Y.: Theory of line-shapes of the exciton absorption bands. Prog. Theor. Phys. https://doi.org/10.1143/PTP.20.53 (1958)

  10. Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3, 325 (1954). https://doi.org/10.1080/00018735400101213

    Article  ADS  Google Scholar 

  11. Grigorchuk, N.: Coupling function of exciton-LO-phonon interaction in anisotropic ionic crystals. Phys. Lett. A 231, 245 (1997). https://doi.org/10.1016/S0375-9601(97)00293-4

    Article  ADS  Google Scholar 

  12. Grigorchuk, N.: Exciton-phonon coupling functions in uniaxial crystals. Phys. Rev. B 55, 888 (1997). https://doi.org/10.1103/PhysRevB.55.888

    Article  ADS  Google Scholar 

  13. Giorgetta, F.R., Baumann, E., Graf, M., Yang, Q., Manz, C., Kohler, K., Beere, H.E., Ritchie, D.A., Linfield, E., Davies, A.G., Fedoryshyn, Y., Jackel, H., Fischer, M., Faist, J., Hofstetter, D.: Quantum cascade detectors. IEEE J. Quantum Electron. https://doi.org/10.1109/JQE.2009.2017929 (2009)

  14. Belkin, M.A., Capasso, F.: New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. https://doi.org/10.1088/0031-8949/90/11/118002 (2015)

  15. Faist, J.: Quantum Cascade Lasers. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  16. Reininger, P., Zederbauer, T., Schwarz, B., Detz, H., MacFarland, D., Maxwell Andrews, A., Schrenk, W., Strasser, G.: InAs/AlAsSb based quantum cascade detector. Appl. Phys. Lett. https://doi.org/10.1063/1.4929501 (2015)

  17. Harrison, P., Valavanis, A.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th edn. Wiley, New York (2016)

    Book  Google Scholar 

  18. Tkach, M.V., Seti, J.O., Voitsekhivska, O.M.: Quasi-particles in Nano-heterostructures: Quantum Dots, Wires and Layers. Books-XXI, Chernivtsi (2015)

  19. Seti, J. u., Tkach, M., Voitsekhivska, O.: Quasi-stationary states of an electron with linearly dependent effective mass in an open nanostructure within transmission coefficient and S-matrix methods. Eur. Phys. J. Plus. https://doi.org/10.1140/epjp/i2018-11921-4 (2018)

  20. Seti, J. u., Voitsekhivska, O., Vereshko, E., Tkach, M.: Effect of interface phonons on the functioning of quantum cascade detectors operating in the far infrared range. Appl. Nanosci. https://doi.org/10.1007/s13204-021-01708-8 (2021)

  21. Zhu, J.G., Ban, S.L.: Effect of electron-optical phonon interaction on resonant tunneling in coupled quantum wells. Eur. Phys. J. B. https://doi.org/10.1140/epjb/e2012-20981-9 (2012)

  22. Zhang, L.: Uniform description of polar optical phonon states and their Frohlich electron-phonon interaction Hamiltonians in multi-layer wurtzite nitride low-dimensional quantum structures. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2012.09.016 (2013)

  23. Bonca, J., Trugman, S.A., Batistic, I.: Holstein polaron. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.60.1633 (1999)

  24. De Filippis, G., Cataudella, V., Marigliano Ramaglia, V., Perron, C.A.: Static and dynamic polaron features in a coherent-state basis. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.72.014307 (2005)

  25. Berciu, M.: Greens Function of a Dressed Particle. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.97.036402 (2006)

  26. Kornilovitch, P.E.: Polaron action for multimode dispersive phonon systems. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.73.094305 (2006)

  27. Covaci, L., Berciu, M.: Holstein polaron: The effect of coupling to multiple-phonon modes. EPL. https://doi.org/10.1209/0295-5075/80/67001 (2007)

  28. Ebrahimnejad, H., Berciu, M.: Trapping of three-dimensional Holstein polarons by various impurities. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.85.165117 (2012)

  29. Bieniasz, K., Berciu, M., Oles, A.M.: The green function variational approximation: significance of physical constraints. Acta Phys. Pol. A. https://doi.org/10.12693/APhysPolA.130.659 (2016)

  30. Möller, M.M., Berciu, M.: Discontinuous polaron transition in a two-band model. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.93.035130 (2016)

  31. Marchand, D.J.J., Stamp, P.C.E., Berciu, M.: Dual coupling effective band model for polarons. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.95.035117 (2017)

  32. Mishchenko, A.S., Prokof’ev, N.V., Sakamoto, A., Svistunov, B.V.: Diagrammatic quantum Monte Carlo study of the Frohlich polaron. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.62.6317 (2000)

  33. Marchand, D.J.J., De Filippis, G., Cataudella, V., Berciu, M., Nagaosa, N., Prokof’ev, N.V., Mishchenko, A.S., Stamp, P.C.E.: Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.105.266605 (2010)

  34. De Filippis, G., Cataudella, V., Mishchenko, A.S., Nagaosa, N.: Optical conductivity of polarons: Double phonon cloudconcept verified by diagrammatic Monte Carlo simulations. Phys. Rev. B. https://doi.org/10.1103/PhysRevB.85.094302 (2012)

  35. Mishchenko, A.S., Nagaosa, N., Prokof’ev, N.V.: Diagrammatic Monte Carlo method for many-polaron problems. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.113.166402 (2014)

  36. Tkach, M.V.: Seti Ju.O., Voitsekhivska O.M., Gutiv V.V.: Method of successive separation and summing of multiplicative diagrams of mass operator for the multi-level quasiparticle interacting with polarization phonons. Condens. Matter Phys. https://doi.org/10.5488/CMP.22.33703 (2019)

  37. Tkach, M., Seti, J. u., Pytiuk, O., Voitsekhivska, O., Gutiv, V.: Spectrum of localized three-level quasiparticle resonantly interacting with polarization phonons at cryogenic temperature. Appl. Nanosci. https://doi.org/10.1007/s13204-019-01002-8(2020)

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Analytical and numerical calculations, creation of the computer code, data collection, preparation of graphic results and analysis were performed by Mykola Tkach, Julia Seti, Oxana Voitsekhivska and Vasyl Hutiv. The first draft of the manuscript was written by Mykola Tkach and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mykola Tkach.

Ethics declarations

Ethics approval

Scientific ethics and principles of COPE are not violated in the paper.

Consent for Publication

Consent to the publication was obtained from all co-authors and their organization.

Conflict of Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Availability of data and materials

https://figshare.com/s/868b65d79391c97ef12f.

Consent to participate

Each of co-authors consent to participate in the work, as well as their organization.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Julia Seti, Oxana Voitsekhivska and Vasyl Hutiv contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkach, M., Seti, J., Voitsekhivska, O. et al. Renormalized Spectrum of Quasiparticle in Two States, Strongly Interacting with Multi-Mode Polarization Phonons at T = 0K. Int J Theor Phys 61, 29 (2022). https://doi.org/10.1007/s10773-022-04991-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04991-5

Keywords

Navigation