Skip to main content
Log in

Renormalized Spectrum of Three-Level Localized Quasiparticle Interacting with Polarization Phonons at Cryogenic Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Based on the generalized method of Feynman–Pines diagram technique, a new method of calculation of the mass operator in the Fourier image of Green’s function is proposed for the system of a three-level localized quasiparticle interacting with polarization phonons at \(T=0\,\hbox {K}\). The revealed main class of diagrams gives the opportunity to write the renormalized mass operator in a form of continuous branch chain fraction with typical links. Such presentation allows effective accounting of multi-phonon processes. It is shown that the renormalized energy spectrum contains the complexes of bound-to-phonon states of the quasiparticle. These complexes essentially differ for the resonant and non-resonant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Y.B. Levinson, E.I. Rashba, Sov. Phys. Usp. 16, 892 (1974)

    Article  ADS  Google Scholar 

  2. A.S. Davydov, Theory of Solids (Nauka, Moscow, 1976)

    Google Scholar 

  3. M.V. Tkach, Theoret. and Math. Phys. 61, 1220 (1984)

    Article  ADS  Google Scholar 

  4. M.V. Tkach, J.O. Seti, O.M. Voitsekhivska, Quasi-particles in Nano-heterostructures: Quantum Dots, Wires and Layers (Books-XXI, Chernivtsi, 2015)

    Google Scholar 

  5. A.S. Mishchenko, Phys. Usp. 48, 887 (2005)

    Article  ADS  Google Scholar 

  6. A.S. Mishchenko, Phys. Usp. 52, 1193 (2009)

    Article  ADS  Google Scholar 

  7. J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72, 066501 (2009)

    Article  ADS  Google Scholar 

  8. W. Terashima, H. Hirayama, Phys. Status Solidi C 6(S2), S615 (2009)

    Article  ADS  Google Scholar 

  9. J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  10. M.A. Belkin, F. Capasso, Phys. Scr. 90, 118002 (2015)

    Article  ADS  Google Scholar 

  11. B. Schwarz et al., Appl. Phys. Lett. 107, 071104 (2015)

    Article  ADS  Google Scholar 

  12. F.R. Giorgetta et al., IEEE J. Quantum Electron. 45, 1039 (2009)

    Article  ADS  Google Scholar 

  13. S.Q. Zhai, J.Q. Liu, X.J. Wang, N. Zhuo, F.Q. Liu, Z.G. Wang, X.-H. Liu, N. Li, W. Lu, Appl. Phys. Lett. 102, 191120 (2013)

    Article  ADS  Google Scholar 

  14. P. Reininger, T. Zederbauer, B. Schwarz, H. Detz, D. MacFarland, A. Maxwell Andrews, W. Schrenk, G. Strasser, Appl. Phys. Lett. 107, 081107 (2015)

    Article  ADS  Google Scholar 

  15. A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S.E. Schacham, M. Tchernycheva, F.H. Julien, Appl. Phys. Lett. 92, 011112 (2008)

    Article  ADS  Google Scholar 

  16. S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 101, 251101 (2012)

    Article  ADS  Google Scholar 

  17. S. Sakr, P. Crozat, D. Gacemi, Y. Kotsar, A. Pesach, P. Quach, N. Isac, M. Tchernycheva, L. Vivien, G. Bahir, E. Monroy, F.H. Julien, Appl. Phys. Lett. 102, 011135 (2013)

    Article  ADS  Google Scholar 

  18. M. Beeler, E. Trichas, E. Monroy, Semicond. Sci. Technol. 28, 074022 (2013)

    Article  ADS  Google Scholar 

  19. M.A. Stroscio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  20. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th edn. (Wiley, New York, 2016)

    Book  Google Scholar 

  21. L. Zhang, Condens. Matter Phys. 14, 13602 (2011)

    Article  Google Scholar 

  22. W.D. Huang, Y.J. Ren, J.F. Yan, Q. Wu, S.H. Zhang, Eur. Phys. J. Appl. Phys. 54, 11301 (2011)

    Article  ADS  Google Scholar 

  23. J. Seti, M. Tkach, O. Voitsekhivska, Rom. J. Phys. 63, 607 (2018)

    Google Scholar 

  24. N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989)

    Article  ADS  Google Scholar 

  25. B.C. Lee, K.W. Kim, M.A. Stroscio, M. Dutta, Phys. Rev. B 58, 4860 (1998)

    Article  ADS  Google Scholar 

  26. B.H. Wu, J.C. Cao, G.Q. Xio, H.C. Lio, Eur. Phys. J. B 33, 9 (2003)

    Article  ADS  Google Scholar 

  27. X. Gao, D. Botez, I. Knezevic, J. Appl. Phys. 103, 073101 (2008)

    Article  ADS  Google Scholar 

  28. J.G. Zhu, S.L. Ban, Eur. Phys. J. B 85, 140 (2012)

    Article  ADS  Google Scholar 

  29. Y.B. Shi, I. Knezevic, J. Appl. Phys. 116, 123105 (2014)

    Article  ADS  Google Scholar 

  30. M.V. Tkach, J.O. Seti, Y.B. Grynyshyn, O.M. Voitsekhivska, Acta Phys. Polonica A 128, 343 (2015)

    Article  Google Scholar 

  31. A.S. Mishchenko, N.V. Prokof’ev, A. Sakamoto, B.V. Svistunov, Phys. Rev. B 62, 6317 (2000)

    Article  ADS  Google Scholar 

  32. A.S. Mishchenko, N. Nagaosa, N.V. Prokof’ev, A. Sakamoto, B.V. Svistunov, Phys. Rev. Lett. 91, 236401 (2003)

    Article  ADS  Google Scholar 

  33. H. Ebrahimnejad, M. Berciu, Phys. Rev. B 85, 165117 (2012)

    Article  ADS  Google Scholar 

  34. O. Goulko, A.S. Mishchenko, L. Pollet, N.V. Prokof’ev, B. Svistunov, Phys. Rev. B 95, 014102 (2017)

    Article  ADS  Google Scholar 

  35. N.V. Prokof’ev, B.V. SvistunovPhys, Rev. B 77, 020408 (2008)

    Article  Google Scholar 

  36. M. Moller, M. Berciu, Phys. Rev. B 93, 035130 (2016)

    Article  ADS  Google Scholar 

  37. D.J.J. Marchand, P.C.E. Stamp, M. Berciu, Phys. Rev. B 95, 035117 (2017)

    Article  ADS  Google Scholar 

  38. I.V. Stasyuk, Green’s Functions in Quantum Statistics of Solid States (Ivan Franko LNU, Lviv, 2013)

    Google Scholar 

  39. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 2012)

    MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Education and Science of Ukraine (Grant No. 0117U001151), and State Fund for Fundamental Research of Ukraine (Grant No. \(\Phi \)83/48117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Tkach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkach, M., Seti, J., Pytiuk, O. et al. Renormalized Spectrum of Three-Level Localized Quasiparticle Interacting with Polarization Phonons at Cryogenic Temperature. J Low Temp Phys 195, 26–36 (2019). https://doi.org/10.1007/s10909-018-02111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02111-4

Keywords

Navigation