Skip to main content
Log in

Time Evolution of Non-Hermitian Systems Driven by a High-Frequency Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the time evolution of non-Hermitian systems periodically driven by a high-frequency field. The analytical time-dependent wavefunctions can be obtained with a perturbation method. Our analytical expressions for the two-state non-Hermitian system agree very well with that of the directly numerical simulation of the evolution equation. It is shown that the probabilities of the two states will oscillate periodically for all the initial states in the real-eigenenergy phase. The system even shows an almost perfect Rabi-oscillation when both the eigenenergy of the time-independent effective Hamiltonian is real and the corresponding initial states are the eigenstates of the effective Hamiltonian. In the imaginary-eigenenergy phase, the population will grow or decay for some time in the evolution process, depending on the initial states. Interestingly and surprisingly, our results show that the probabilities will inevitably increase for the long-time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashida, Y., Gong, Z., Ueda, M.: . arXiv:2006.01837

  2. Ruschhaupt, A., Delgado, F., Muga, J.G.: . J. Phys. A 38, L171 (2005)

    Article  ADS  Google Scholar 

  3. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: . Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  4. Kane, C.L., Lubensky, T.C.: . Nat. Phys. 10, 39 (2014)

    Article  Google Scholar 

  5. Huber, S.D.: . Nat. Phys. 12, 621 (2016)

    Article  Google Scholar 

  6. Joglekar, Y.N., Wolf, S.J.: . Eur. J. Phys. 30, 661 (2009)

    Article  Google Scholar 

  7. Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: . Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  8. Carusotto, I., Ciuti, C.: . Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  9. Colbert, D.T., Miller, W.H.: . J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  10. Moiseyev, N.: . Phys. Rep. 302, 212 (1998)

    Article  ADS  Google Scholar 

  11. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: . J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  12. Lindblad, G.: . Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  13. Moiseyev, N.: . Phys. Rev. A 83, 052125 (2011)

    Article  ADS  Google Scholar 

  14. Luo, X., Huang, J., Zhong, H., Qin, X., Xie, Q., Kivshar, Y.S., Lee, C.: . Phys. Rev. Lett. 110, 243902 (2013)

    Article  ADS  Google Scholar 

  15. Joglekar, Y.N., Marathe, R., Durganandini, P., Pathak, R.K.: . Phys. Rev. A 90, 040101 (2014)

    Article  ADS  Google Scholar 

  16. Gong, J., Wang, Q.-H.: . Phys. Rev. A 91, 042135 (2015)

    Article  ADS  Google Scholar 

  17. Lee, T.E., Joglekar, Y.N.: . Phys. Rev. A 92, 042103 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. Longhi, S.: . J. Phys. A 50, 505201 (2017)

    Article  MathSciNet  Google Scholar 

  19. Maamachea, M., Lamri, S., Cherbal, O.: . Ann. Phys. 378, 150 (2017)

    Article  ADS  Google Scholar 

  20. Gong, J., Wang, Q.-H.: . Phys. Rev. A 97, 052126 (2018)

    Article  ADS  Google Scholar 

  21. Gong, J., Wang, Q.-H.: . Phys. Rev. A 99, 012107 (2019)

    Article  ADS  Google Scholar 

  22. Mochizuki, K., Kim, D., Kawakami, N., Obuse, H.: . Phys. Rev. A 102, 062202 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chitsazi, M., Li, H., Ellis, F.M., Kottos, T.: . Phys. Rev. Lett. 119, 093901 (2017)

    Article  ADS  Google Scholar 

  24. Li, J., Harter, A.K., Liu, J., Melo, L., Joglekar, Y.N., Luo, L.: . Nat. Commun. 10, 855 (2019)

    Article  ADS  Google Scholar 

  25. Rahav, S., Gilary, I., Fishman, S.: . Phys. Rev. A 68, 013820 (2003)

    Article  ADS  Google Scholar 

  26. Goldman, N., Dalibard, J.: . Phys. Rev. X 4, 031027 (2014)

    Google Scholar 

  27. Chen, S.L., Wang, L.X., Wen, L., Dai, C.Q., Liu, J.K., Zhang, X.F.: . Optik 247, 167932 (2021)

    Article  ADS  Google Scholar 

  28. Zheng, G.-P., Wang, G.-T.: . Int. J. Theor. Phys. 60, 1053 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grants No. 12047501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Ping Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, GP., Wang, GT. Time Evolution of Non-Hermitian Systems Driven by a High-Frequency Field. Int J Theor Phys 61, 38 (2022). https://doi.org/10.1007/s10773-022-04989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04989-z

Keywords

Navigation