Skip to main content
Log in

Quantum Identity Authentication Scheme Based on Quantum Walks on Graphs with IBM Quantum Cloud Platform

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The purpose of quantum identity authentication is to confirm the identity of participants before the communication. However, there are several flaws in the existing research: (1) The quantum sequence that carry signals needs to be transmitted, and it may be leaked. (2) It generally required the preparation of entangled states to complete authentication, which are not easy to prepare with existing optical technology and could not be fully measured. (3) Only theoretical schemes are proposed without further experimental verification. To overcome the above flaws, a novel quantum identity authentication scheme under the semi-honest third party based on quantum walks on a two-point complete graph is proposed in this paper. The transfer of the particle is easily avoided by generation of the entanglement resources with the conditional shift operator in quantum walks, which reduce the risk of information leakage. The correctness of the proposed scheme is proved by examples and experimental results on the IBM quantum cloud platform. Therefore, the presented scheme has high security and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data sets supporting the results of this article are included within the article and its additional files

References

  1. Li, J.K., Zhang, D.Y., Zhang, Y., et al: . Research of User Authentication Mechanism and Its Security Analysis 18, 126–128 (2001)

    Google Scholar 

  2. Li, X.Y., et al.: Study on evolution history and development trend of network trusted identity authentication technology. Cyberspace Security. 9(11), 1 (2018)

    Google Scholar 

  3. Zhu, Q., et al.: Research of the PKI CA authentication technology. Inform. Secur. Technol. 7, 37–39 (2016)

    Google Scholar 

  4. Song, X.R., Zhang, M., et al.: Research on the technology of network trusted identity authentication. Cyberspace Secur. 9, 69–77 (2018)

    Google Scholar 

  5. Hong, C.h., Heo, J., Jang, J.G., et al: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 236 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  6. Zhang, X.L., Zhao, Y.J., et al.: Two-way synchronous quantum identity authentication protocol based on single photon. J. Comput. Applic. 40 (09), 2634–2638 (2020)

    Google Scholar 

  7. Zhu, H., Wang, L., Zhang, Y., et al.: An efficient quantum identity authentication key agreement protocol without entanglement. Quantum Inf. Process. 19(10), 1–14 (2020)

    MathSciNet  ADS  Google Scholar 

  8. Jiang, S., Zhou, R.G., Hu, W., et al: Semi-quantum mutual identity authentication using Bell states. Int. J. Theor. Phys. 1–10 (2021)

  9. Li, J.X., He, Z.X., Zhao, S., et al.: Multiparty quantum communication protocol based on quantum stabilizer codes with identity authentication. EPL (Europhysics Letters). 133(2), 20004 (2021)

    Article  ADS  Google Scholar 

  10. Zhang, S., Chen, Z.K., Shi, R.H., et al.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020)

    Article  MathSciNet  Google Scholar 

  11. Yin, A., Chen, T., et al.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)

    Article  MathSciNet  Google Scholar 

  12. He, P., Huang, Y., Dai, J., et al.: An improved quantum identity authentication protocol for multi-party secure communication. In: International Conference on Artificial Intelligence and Security, pp. 258–266 (2020)

  13. Li, X.Y., Chang, Y., Zhang, S.B., et al: Quantum secret sharing scheme with credible authentication based on quantum walk. KSII Trans. Internet Inform. Syst. 14(7), 3116–3133 (2020)

    Google Scholar 

  14. Li, X.Y., Chang, Y., Zhang, S.B., et al.: Quantum secret sharing based on quantum walk. Comput. Eng. Des. 41(11), 3030–3035 (2020)

    Google Scholar 

  15. Venegas-Andraca, S.E., et al.: Quantum walks: A comprehensive review. Quantum Inf. Processing. 11(5), 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, H.J., Li, J., Xiang, N., et al.: A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Inf. Process. 18, 316 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  17. Wang, Y., Shang, Y., Xue, P., et al.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 1–13 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  18. Xue, P., Zhang, R., Qin, H., et al: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114(14), 140502 (2015)

    Article  ADS  Google Scholar 

  19. Zhou, W.D., et al: Review on quantum walk algorithm. J. Phys.: Conf. Ser. 1748(3), 032022 (2021)

    Google Scholar 

  20. Aharonov, Y., Davidovich, L., Zagury, N., et al.: Quantum random walks. Phys. Rev. A. 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  21. Salimi, S., et al.: Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory. Quantum Inf. Process. 9, 75–91 (2010)

    Article  MathSciNet  Google Scholar 

  22. Shang, Y., Wang, Y., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL (Europhysics Letters). 124(6), 60009 (2019)

    Article  Google Scholar 

  23. Ambainis, A., Bach, E., Nayak, A., et al.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001)

  24. Aharonov, D., Ambainis, A., Kempe, J., et al.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp 50–59 (2001)

  25. Di Franco, C., Mc Gettrick, M., Busch, T., et al: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106(8), 080502 (2011)

    Article  Google Scholar 

  26. Bennett, C.H., Brassard, G., et al.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers: Systems and Signal Processing, pp. 175–179 (1984)

  27. Shor, P.W., Preskill, J., et al.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  28. Zhang, X., et al.: Research on Quantum Secure Multi-party Computation. Heilongjiang University (2019)

  29. Sun, M.H., et al.: Research on secure multiparty computing and its application. Beijing University of Posts and Telecommunications (2013)

  30. Wu, W., Zhao, Y., et al.: Quantum private comparison of size using d-level Bell states with a semi-honest third party. Quantum Inf. Process. 20, 155 (2021)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Funding

Project supported by Natural Science Foundation of Hunan Province (2021JJ30454), Hunan Provincial Science and Technology Project Foundation (2018TP1018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, X., Wang, S., Ren, S. et al. Quantum Identity Authentication Scheme Based on Quantum Walks on Graphs with IBM Quantum Cloud Platform. Int J Theor Phys 61, 40 (2022). https://doi.org/10.1007/s10773-022-04986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04986-2

Keywords

Navigation