Skip to main content
Log in

Tighter Constraints of Multipartite Systems in terms of General Quantum Correlations

  • Original research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Monogamy and polygamy relations characterize the quantum correlation distributions among multipartite quantum systems. We investigate the monogamy and polygamy relations satisfied by measures of general quantum correlation. By using the Hamming weight, we derive new monogamy and polygamy inequalities satisfied by the β-th power and the α-th power of general quantum correlations, respectively. We show that these monogamy and polygamy relations are tighter than the existing ones, such as Liu [Int. J. Theor. Phys. 60, 1455–1470 (2021)]. Taking concurrence and the Tsallis-q entanglement of assistance as examples, we show the advantages of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)

    Article  ADS  Google Scholar 

  5. Raussendorf, R., Briegel, H.J.: one-way quantum computer. A. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  6. Liang, J.M., Shen, S.Q., Li, M., Fei, S.M.: Quantum algorithms for the generalized eigenvalue problem, Quant. Inf. Process. 21, 23 (2022)

  7. Liang, J.M., Shen, S.Q., Li, M.: Quantum Algorithms and Circuits for Linear Equations with Infinite or No Solutions. Int. J. Theor Phys. 58, 2632–2640 (2019)

    Article  MathSciNet  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  10. Hirono, Y.J.: Symmetry principle for topologically ordered phases. AAPPS Bull. 29, 45–51 (2019)

    Google Scholar 

  11. Xiang, Y., Sun, F.X., He, Q.Y., Gong, Q.H.: Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering. Fundam. Res. 1, 99 (2021)

    Article  Google Scholar 

  12. Huang, W.J., Chien, W.C., Cho, C.H., Huang, C.C., Huang, T.W., Chang, C.R.: Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q 53-qubit system. Quantum Eng. e45, 2 (2020)

    Google Scholar 

  13. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wootters, W.K.: Entanglement of formation of an arbitrary state of tow qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  15. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  16. Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  17. Terhal, B.: Is entanglement monogamous? IBM J. Res. Dev. 48, 71 (2004)

    Article  Google Scholar 

  18. Murao, M., Plenio, M.B., Vedral, V.: Quantum-information distribution via entanglement. Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  19. Romero, J.: Shaping up high-dimensional quantum information. AAPPS Bull. 29, 2–4 (2019)

    Google Scholar 

  20. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  21. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  22. Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)

    Article  ADS  Google Scholar 

  23. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    Article  ADS  Google Scholar 

  24. Adesso, G., Illuminati, F.: Strong monogamy of bipartite and genuine multiparitie entanglement: the Gaussian case. Phys. Rev. Lett. 99, 150501 (2007)

    Article  ADS  Google Scholar 

  25. Yang, L.M., Chen, B., Fei, S.M., Wang, Z.X.: Tighter constraints of multiqubit entanglement. Commun. Theor. Phys. 71, 545 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jin, Z.X., Fei, S.M.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)

    Article  ADS  Google Scholar 

  27. Liu, D.: Tighter constraints of quantum correlations among multipartite systems. Int. J. Theor. Phys. 60, 1455–1470 (2021)

    Article  MathSciNet  Google Scholar 

  28. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev A 81, 062328 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kim, J.S.: Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Ann. Phys. 373, 197–206 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, Y.X., Mu, L.Z., Vedral, V., Fan, H.: Entanglement rényi-entropy. Phys. Rev. A 93, 022324 (2016)

    Article  ADS  Google Scholar 

  31. Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)

    Article  ADS  Google Scholar 

  32. Jin, Z.X., Qiao, C.F.: Monogamy and polygamy relations of multiqubit entanglement based on unified entropy. Chin. Phys. B 29, 020305 (2020)

    Article  ADS  Google Scholar 

  33. Jin, Z.X., Fei, S.M.: Polygamy relations of multipartite entanglement beyond qubits. J. Phys. A: Math. Theor. 52, 165303 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Jin, Z.X., Fei, S.M., Qiao, C.F.: Complementary quantum correlations among multipartite systems. Quant. Inf. Process. 19, 101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev A 94, 062338 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  37. Liang, Y.Y., Zhu, C.J., Zheng, Z.J.: Tighter monogamy constraints in multi-qubit entanglement systems. Int. J. Theor. Phys. 59, 1291–1305 (2020)

    Article  MathSciNet  Google Scholar 

  38. Kumar, A., Prabhu, R., Sen(de), A., Sen, U.: Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)

  39. Salini, K., Prabhu, R., Sen(de), A., Sen, U.: Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous. Ann. Phys. 348, 297–305 (2014)

  40. Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. Goura, G., Bandyopadhyayb, S., Sandersc, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Wu, Y.J., Wu, K.: Tighter weighted relations of the Tsallis-q entanglement. Int. J. Theor. Phys. 59, 114–124 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant No. 12075159), Beijing Natural Science Foundation (Z190005), Academy for Multidisciplinary Studies, Capital Normal University, the Academician Innovation Platform of Hainan Province, and Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (No. SIQSE202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Qiao Lv.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, JH., Ren, YY., Lv, QQ. et al. Tighter Constraints of Multipartite Systems in terms of General Quantum Correlations. Int J Theor Phys 61, 4 (2022). https://doi.org/10.1007/s10773-022-04984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04984-4

Keywords

Navigation