Skip to main content
Log in

Deterministic Remote Preparation of an Arbitrary Single-Qudit State with High-Dimensional Spatial-Mode Entanglement via Linear-Optical Elements

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Preparing high-dimensional quantum state remotely with quantum entanglement plays an important role in long-distance quantum communication. In this work, we present a protocol for deterministic remote preparation of an arbitrary single-qudit state with high-dimensional spatial-mode entangled state, resorting to linear-optical elements only. The sender first transforms the high-dimensional quantum entangled state to the target state via linear optical elements, then performs single-particle measurement on her entangled particle. The receiver can reconstruct the original high-dimensional state by performing unitary operation in accordance with the sender’s measurement result. The protocol is more convenient in application since it only requires linear optical elements for deterministic remote preparation of an arbitrary single-qudit state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassad, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp 175–179. IEEE Press, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    Article  ADS  Google Scholar 

  4. Zhang, Y.C., Chen, Z.Y., Pirandola, S., Wang, X.Y., Zhou, C., Chu, B.J., Zhao, Y.J., Xu, B.J., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125 (1), 010502 (2020)

    Article  ADS  Google Scholar 

  5. Cao, Y., Li, Y. H., Yang, K. X., Jiang, Y. F., Li, S. L., Hu, X. L., Abulizi, M., Li, C. L., Zhang, W. J., Sun, Q. C., Liu, W. Y., Jiang, X., Liao, S. K., Ren, J. G., Li, H., You, L. X., Wang, Z., Yin, J., Lu, C. Y., Wang, X. B., Zhang, Q., Peng, C. Z., Pan, J. W.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260503 (2020)

    Article  ADS  Google Scholar 

  6. Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W.J., Li, H., Wang, Z., You, L. X., Li, M. J., Chen, H., Chen, Y. A., Zhang, Q., Peng, C. Z., Ma, X. F., Chen, T. Y., Pan, J. W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14(7), 422 (2020)

    Article  ADS  Google Scholar 

  7. Guo, P.L., Dong, C., He, Y., Jing, F., He, W.T., Ren, B.C., Li, C.Y., Deng, F.G.: Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons. Opt. Express 28, 4611 (2020)

    Article  ADS  Google Scholar 

  8. Zhou, C., Wang, X., Zhang, Z., Yu, S., Chen, Z., Guo, H.: Rate compatible reconciliation for continuous-variable quantum key distribution using Raptor-like LDPC codes. Sci. China-Phys. Mech. Astron 64(6), 260311 (2021)

    Article  ADS  Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  10. Deng, F. G., Long, G. L., Liu, X. S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68 (4), 042317 (2003)

    Article  ADS  Google Scholar 

  11. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  12. Zhang, W., Ding, D. S., Sheng, Y. B., Zhou, L., Shi, B. S., Guo, G. C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  13. Chen, S. S., Zhou, L., Zhong, W., Sheng, Y. B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61 (9), 090312 (2018)

    Article  Google Scholar 

  14. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng 1, 26 (2019)

    Article  Google Scholar 

  15. Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light: Sci. Appl. 8, 22 (2019)

    Article  ADS  Google Scholar 

  16. Zhou, Z. R., Sheng, Y. B., Niu, P. H., Yin, L. G., Long, G. L., Hanzo, L.: Measurement-device- independent quantum secure direct communication. Sci. China-Phys. Mech. Astron 63(3), 230362 (2020)

    Article  ADS  Google Scholar 

  17. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12 (2020)

    Article  Google Scholar 

  18. Yang, Y. G., Wang, Y. C., Yang, Y. L., Chen, X. B., Li, D., Zhou, Y. H., Shi, W. M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China-Phys. Mech. Astron 64(6), 260321 (2021)

    Article  ADS  Google Scholar 

  19. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light: Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  20. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267 (2021)

    Article  Google Scholar 

  21. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  22. Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)

    Article  ADS  Google Scholar 

  24. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Article  Google Scholar 

  25. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91(3), 032328 (2015)

    Article  ADS  Google Scholar 

  26. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25(10), 10863–10873 (2017)

    Article  ADS  Google Scholar 

  27. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  28. Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-optical microcavities. Phys. Rev. A 94(6), 062310 (2016)

    Article  ADS  Google Scholar 

  29. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrodinger dynamics. Phys. Rev. A 93(5), 052324 (2016)

    Article  ADS  Google Scholar 

  30. Reimer, C., Sciara, S., Roztocki, P., Islam, M., Corts, L.R., Zhang, Y.B., Fischer, B., Loranger, S., Kashyap, R., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Munro, W.J., Azana, J., Kues, M., Morandotti, R.: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)

    Article  Google Scholar 

  31. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  33. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  34. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  35. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  36. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  37. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  38. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  39. Zhou, P., Jiao, X.F., Lv, S.X.: Parallel remote state preparation of arbitrary single-qubit states via linear- optical elements by using hyperentangled Bell states as the quantum channel. Quantum Inf. Process. 17, 298 (2018)

    Article  ADS  MATH  Google Scholar 

  40. Nawaz, M., Islam, R., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B. 51, 075501 (2018)

    Article  ADS  Google Scholar 

  41. Zha, X. W., Wang, M. R., Jiang, R. X.: Two forms schemes of deterministic remote state preparation for four-qubit cluster-type state. Int. J. Theor. Phys. 59(3), 960–973 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chaudhary, M., Fadel, M., Ilo-Okeke, E. O., Pyrkov, A. N., Ivannikov, V., Byrnes, T.: Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A 103(6), 062417 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  43. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  44. Zhou, J. D., Hou, G., Zhang, Y. D.: Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys. Rev. A 64 (1), 012301 (2001)

    Article  ADS  Google Scholar 

  45. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold Sn− 1. Phys. Rev. A 65(2), 022316 (2002)

    Article  ADS  Google Scholar 

  46. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  47. Yu, C. S., Song, H. S., Wang, Y. H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73(2), 022340 (2006)

    Article  ADS  Google Scholar 

  48. Mikami, H., Kobayashi, T.: Remote preparation of qutrit states with biphotons. Phys. Rev. A 75(2), 022325 (2007)

    Article  ADS  Google Scholar 

  49. Hu, X.M., Chen, J.S., Liu, B.H., Guo, Y., Huang, Y.F., Zhou, Z.Q., Han, Y.J., Li, C.F., Guo, G.C.: Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits. Phys. Rev. Lett. 117, 170403 (2016)

    Article  ADS  Google Scholar 

  50. Guo, Y., Hu, X.M., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental realization of path-polarization hybrid high-dimensional pure state. Opt. Express 26, 28918–28926 (2018)

    Article  ADS  Google Scholar 

  51. Hu, X.M., Guo, Y., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018)

    Article  ADS  Google Scholar 

  52. Yan, X.Y., Zhou, N.R., Gong, L.H., Wang, Y.Q., Wen, X.J.: High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Inf. Process. 18, 271 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. Hu, X.M., Xing, W.B., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Efficient generation of high-dimensional entanglement through multipath down-conversion. Phys. Rev. Lett. 125, 090503 (2020)

    Article  ADS  Google Scholar 

  54. Hu, X.M., Xing, W.B., Liu, B.H., He, D.Y., Cao, H., Guo, Y., Zhang, C., Zhang, H., Huang, Y.F., Li, C.F., Guo, G.C.: Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica 7, 738–743 (2020)

    Article  ADS  Google Scholar 

  55. Cao, H., Gao, S.C., Zhang, C., Wang, J., He, D.Y., Liu, B.H., Zhou, Z.W., Chen, Y.J., Li, Z.H., Yu, S.Y., Romero, J., Huang, Y.F., Li, C.F., Guo, G.C.: Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica 7, 232–237 (2020)

    Article  ADS  Google Scholar 

  56. Hu, X.M., Zhang, C., Guo, Y., Wang, F.X., Xing, W.B., Huang, C.X., Liu, B.H., Li, C.F., Guo, G.C., Gao, X.Q., Pivoluska, M., Huber, M.: Pathways for entanglement-based quantum communication in the face of high noise. Phys. Rev. Lett. 127, 110505 (2021)

    Article  ADS  Google Scholar 

  57. Zhou, N.R., Xu, Q.D., Du, N.S., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20, 124 (2021)

    Article  MathSciNet  Google Scholar 

  58. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  59. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  60. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  61. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  62. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  63. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)

    Article  ADS  Google Scholar 

  64. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  65. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  66. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  67. Gao, C.Y., Ren, B.C., Zhang, Y.X., Ai, Q., Deng, F.G.: The linear optical unambiguous discrimination of hyperentangled Bell states assisted by time bin. Ann. Phys. 531, 1900201 (2019)

    Article  MathSciNet  Google Scholar 

  68. Gao, C.Y., Ren, B.C., Zhang, Y.X., Ai, Q., Deng, F.G.: Universal linear-optical hyperentangled Bell-state measurement. Appl. Phys. Express 13, 027004 (2020)

    ADS  Google Scholar 

  69. Hu, X.M., Zhang, C., Liu, B.H., Cai, Y., Ye, X.J., Guo, Y., Xing, W. B., Huang, C. X., Huang, Y. F., Li, C. F., Guo, G. C.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)

    Article  ADS  Google Scholar 

  70. Hu, X.M., Huang, C.X., Sheng, Y.B., Zhou, L., Liu, B.H., Guo, Y., Zhang, C., Xing, W.B., Huang, Y.F., Li, C.F., Guo, G.C.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)

    Article  ADS  Google Scholar 

  71. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  72. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  73. Li, C.Y., Shen, Y.: Asymmetrical hyperentanglement concentration for entanglement of polarization and orbital angular momentum. Opt. Express 27, 13172 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564004 and 61501129, Natural Science Foundation of Guangxi under Grant No. 2018JJA110112, the Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X.Q., Feng, K.H. & Zhou, P. Deterministic Remote Preparation of an Arbitrary Single-Qudit State with High-Dimensional Spatial-Mode Entanglement via Linear-Optical Elements. Int J Theor Phys 61, 36 (2022). https://doi.org/10.1007/s10773-022-04976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04976-4

Keywords

Navigation