Skip to main content

Advertisement

Log in

The Quantum Otto Heat Engine with a Relativistically Moving Thermal Bath

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the quantum thermodynamic cycle of a quantum heat engine carrying out an Otto thermodynamic cycle. We use the thermal properties of a moving heat bath with relativistic velocity with respect to the cold bath. As a working medium, we use a two-level system and a harmonic oscillator that interact with a hot and cold bath respectively. In the current work, the quantum heat engine is studied in the high and low temperatures regime. Using quantum thermodynamics and the theory of open quantum systems we obtain the total produced work, the efficiency and the efficiency at maximum power. The maximum efficiency of the Otto quantum heat engine depends only on the ratio of the minimum and maximum energy gaps. On the contrary, the efficiency at maximum power and the extracted work decreases with the velocity since the motion of the heat bath has an energy cost for the quantum heat engine. Furthermore, the efficiency at maximum power depends on the nature of the working medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alicki, R.: The quantum open system as a model of the heat engine. J. Phys. A: Math. Gen. 12 (1979)

  2. Abah, O., Lutz, E.: Energy efficient quantum machines. EPL (Europhysics Letters) 118, 40005 (2017)

    Article  ADS  Google Scholar 

  3. Kosloff, R., Rezek, Y.: The quantum harmonic Otto cycle. Entropy 19, 136 (2017)

    Article  ADS  Google Scholar 

  4. Chand, S., Biswas, A.: Single-ion quantum Otto engine with always-on bath interaction. EPL (Europhysics Letters) 118, 60003 (2017)

    Article  ADS  Google Scholar 

  5. Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL (Europhysics Letters) 113, 60002 (2016)

    Article  ADS  Google Scholar 

  6. Uzdin, R., Kosloff, R.: Universal features in the efficiency at maximal work of hot quantum otto engines. EPL (Europhysics Letters) 118, 40001 (2014)

    Article  Google Scholar 

  7. Beretta, G.P.: Quantum thermodynamic Carnot and Otto-like cycles for a two-level system. EPL (Europhysics Letters) 99, 20005 (2012)

    Article  ADS  Google Scholar 

  8. Solfanelli, A., Falsetti, M., Campisi, M.: Nonadiabatic single-qubit quantum Otto engine. Phys. Rev. B 101, 054513 (2020)

    Article  ADS  Google Scholar 

  9. Mehta, V., Johal, R.S.: Quantum Otto engine with exchange coupling in the presence of level degeneracy. Phys. Rev. E 96, 032110 (2017)

    Article  ADS  Google Scholar 

  10. Deffner, S.: Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)

    Article  ADS  Google Scholar 

  11. Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)

    Article  ADS  Google Scholar 

  12. Yuen, C.K.: Lorentz transformation of thermodynamic quantities. Am. J. Phys. 38, 246 (1970)

    Article  ADS  Google Scholar 

  13. Callen, H., Horwitz, G.: Relativistic thermodynamics. Am. J. Phys. 39, 938 (1971)

    Article  ADS  Google Scholar 

  14. Farias, C., Pinto, V.A., Moya, P.S.: What is the temperature of a moving body. Sci. Rep. 7, 17657 (2017)

    Article  ADS  Google Scholar 

  15. von Mosengeil, K.: Theorie der stationären Strahlung in einem gleichförmig Bewegten Hohlraum. Ann. Phys. (Leipzig) 327, 867 (1907)

    Article  ADS  MATH  Google Scholar 

  16. Planck, M.: Zur Dynamik Bewegter Systeme, Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften 542 (1907); Zur Dynamik Bewegter Systeme. Ann. Phys. 1, 331 (1908)

    Google Scholar 

  17. Einstein, A.: Über das relativitätsprinzip und die aus Demselben Gezogenen folgerungen. Jahrb. Radioakt. Elektron. 4, 411 (1907)

    Google Scholar 

  18. Ott, H.: Lorentz-transformation der wärme und der temperatur. Z Physik 175, 70 (1963)

    Article  ADS  MATH  Google Scholar 

  19. Arzeliès, H.: Sur le Concept de Temperature en Thermodynamique Relativiste et en Thermodynamique Statistique. Nuovo Ciment. B 40, 333 (1965)

    Article  ADS  Google Scholar 

  20. Landsberg, P.T.: Does a moving body appear cool?. Nature 212, 571 (1966)

    Article  ADS  Google Scholar 

  21. Cavalleri, G., Salgarelli, G.: Revision of the relativistic dynamics with variable rest mass and application to relativistic thermodynamics. Nuovo Ciment. A62, 722 (1969)

    Article  ADS  Google Scholar 

  22. Scovil, H.E.D., Schulz-DuBois, E.O.: Three-Level Masers as heat engines. Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  23. Klaers, J., Faelt, S., Imamoglu, A., Togan, E.: Squeezed thermal reservoirs as a resource for a nano-mechanical engine beyond the Carnot limit. Phys. Rev. X 7, 031044 (2017)

    Google Scholar 

  24. Zhang, Y., Guo, J., Chen, J.: Unified trade-off optimization of quantum Otto heat engines with squeezed thermal reservoirs. Quantum Inf. Process. 19, 268 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, Y.: Optimization performance of quantum Otto heat engines and refrigerators with squeezed thermal reservoirs. Physica A 559, 125083 (2020)

    Article  Google Scholar 

  26. Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  27. Assis, R.J., Sales, J.S., Cunha, J.A.R., Almeida, N.G.: Universal two-level quantum Otto machine under a squeezed reservoir. Phys. Rev. E 102, 052131 (2020)

    Article  ADS  Google Scholar 

  28. Abah, O., Lutz, E.: Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhysics Letters) 106, 20001 (2014)

    Article  ADS  Google Scholar 

  29. Gelbwaser-Klimovsky, D., Alicki, R., Kurizki, G.: Minimal universal quantum heat machine. Phys. Rev. E 87, 012140 (2013)

    Article  ADS  Google Scholar 

  30. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  31. Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  32. Papadatos, N., Anastopoulos, C.: Relativistic quantum thermodynamics of moving systems. Phys. Rev. D 102, 085005 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. Breuer, H.P., Petruccione, F.P.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  34. Geva, E., Kosloff, R.: A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96, 3054 (1992)

    Article  ADS  Google Scholar 

  35. Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83 (2006)

    Article  ADS  Google Scholar 

  36. Lee, J.S., Lee, S.H., Um, J., Park, H.: Carnot efficiency and zero-entropy-production rate do not guarantee reversibility of a process. Journal of the Korean Physical Society volume 75 (2019)

  37. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    MATH  Google Scholar 

  38. Curzon, F.L., Ahlborn, B.: Efficiency of a carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  39. Van den Broeck, C.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  40. Kieu, T.D.: The Second Law, Maxwell’s Demon, andWork derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  42. Weldon, H.A.: Thermal green functions in coordinate space for massless particles of any spin. Phys. Rev. D 62, 056010 (2000)

    Article  ADS  Google Scholar 

  43. Letaw, J.R.: Stationary World Lines and the Vacuum Excitation of Noninertial Detectors. Phys. Rev. D 23, 1709 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  45. DeWitt, B.S. Hawking, S.W., Israel, W. (eds.): Quantum Gravity: the New Synthesis in General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

  46. Hu, B.L., Lin, S.-Y., Louko, J.: Relativistic quantum information in Detectors–Field interactions. Class Quantum Grav. 29, 224005 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Costa, S.S., Matsas, G.E.A.: Temperature and relativity. Phys. Lett. A209, 155 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Landsberg, P.T., Matsas, G.E.A.: Laying the ghost of the relativistic temperature transformation. Phys. Lett. A223, 401 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Landsberg, P.T., Matsas, G.E.A.: The impossibility of a universal relativistic temperature transformation. Physica A 340, 92 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  50. Nakamura, T.K.: Lorentz transform of Black-Body radiation temperature. Euro. Phys. Lett. 88, 20004 (2009)

    Article  ADS  Google Scholar 

  51. Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time. Phys. Today 37(9), 62 (1984)

    Article  Google Scholar 

  52. Scully, M.O.: Quantum afterburner: Improving the Efficiency of an Ideal Heat engine. Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  53. Quan, H.T., Liu, Y.-x., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  54. Lin, B., Chen, J.: Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  55. Deffner, S.: Efficiency of harmonic quantum otto engines at maximal power. Entropy 20, 875 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank my supervisor Charis Anastopoulos for his stimulating and fruitful discussions and suggestions that help me to complete this work. I would also like to thank Georgios Katsoulis for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Papadatos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadatos, N. The Quantum Otto Heat Engine with a Relativistically Moving Thermal Bath. Int J Theor Phys 60, 4210–4223 (2021). https://doi.org/10.1007/s10773-021-04969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04969-9

Keywords

Navigation