Skip to main content
Log in

Quantum Image Edge Detection Based on Multi-Directions Gray-Scale Morphology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Aiming at extending the classical strong mathematical morphology operations to quantum image processing field, in this paper, an quantum image edge detection method is designed based on the novel enhanced quantum representation of digital images (NEQR) and multi-directions Gray-scale morphology. Because NEQR is more convenient for gray operation of quantum image. In addition, based on multi-directional feature of image edges, the multi-directional structures are constructed by combining the mathematical morphology. Compared with the existing quantum image edge detection methods, this method can reach a better effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2002)

    Google Scholar 

  2. Feynman, R.P.: Simulating Physics with Computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science. pp. 124–134. IEEE Computer Society Press, Los Alamitos, CA (1994)

  4. Grover, L.K.: A fast quantum mechanical algorithm for estimating the median. Twenty-eighth Acm Symposium on Theory of Computing. ACM (1996)

  5. Miakisz K, Piotrowski E W. Quantization of games: towards quantum artificial intelligence. Elsevier Science Publishers Ltd. (2006), 358, 15, 22

  6. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015)

    Article  ADS  Google Scholar 

  7. Marco, L., Jeffrey, U.: Quantum algorithmic methods for computational geometry. Math. Struct. Comput. Sci. 20, 1117–1125 (2010)

    Article  MathSciNet  Google Scholar 

  8. Duan, R.L., Qing-Xiang, L.I., Yu-He, L.I.: Summary of image edge detection. Opt. Technol. (2005)

  9. Serra, J.: Introduction to mathematical morphology. Comput. Vision Graph. Image Process. 35, 283–305 (1986)

    Article  Google Scholar 

  10. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image Analysis Using Mathematical Morphology. IEEE Trans. Pattern Anal. & Mach. Intell. 9, 532–550 (1987)

    Article  Google Scholar 

  11. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process A Publ. IEEE Signal Process. Soc. 15, 430–444 (2006)

    Article  ADS  Google Scholar 

  12. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Venegas-Andraca, S.E., Bose, S.: Storing, Processing and Retrieving an Image using Quantum Mechanics. Quantum Information & Computation. Quantum Information and Computation (2003)

  14. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Kluwer Academic Publishers (2010)

    Book  Google Scholar 

  15. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  16. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sobel, L.: Camera Models and Machine Perception. Stanford Univ Press, Stanford (1970)

    Google Scholar 

  18. Prewitt, J.: Object Enhancement and Extraction, pp. 75–149. Picture Process and Psychopictoric Press, New York (1970)

    Google Scholar 

  19. Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biol. Med. 18, 113–125 (1971)

    Google Scholar 

  20. Canny, J.: A computational approach to edge detection. IEEE TPAMI. 8, 679–697 (1986)

    Article  Google Scholar 

  21. Lee, J., Haralick, R.M., Shapiro, L.G.: Morphologic edge detection. IEEE J. Robot. Autom. 3, 142–156 (1986)

    Article  Google Scholar 

  22. Liu Q, Lai C Y. Edge detection based on mathematical morphology theory. International Conference on Image Analysis & Signal Processing. IEEE, (2011)

  23. Raid A M , Khedr W M , El-Dosuky M A , et al. Image restoration based on morphological operations. International Journal of Computer Science Engineering & Informa, (2014)

  24. Sagar, B.S.D., Lim, S.L.: Ranks for pairs of spatial fields via metric based on grayscale morphological distances. IEEE Trans. Image Process. 24, 908–918 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rivest, J.F.: Morphological gradients. J Elec. Imaging. 2, 326–336 (1992)

    Google Scholar 

  26. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8, 208–213 (2009)

    Article  Google Scholar 

  27. Thapliyal H , Ranganathan N. Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate. IEEE Computer Society Symposium on Vlsi. IEEE, (2009)

  28. Thapliyal H , Ranganathan N. A New Design of the Reversible Subtractor Circuit. Nanotechnology. IEEE, (2011)

  29. Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7, 17–26 (2007)

    Google Scholar 

  30. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Science China Inf. Sci. 58, 1–13 (2014)

    MATH  Google Scholar 

  32. Barenco, A., Bennett, C.H., Cleve, R., Margolus, N., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  33. Yuan, S., Mao, X., Chen, L., Wang, X.: Improved quantum dilation and erosion operations. Int J Quantum Inf. 14, 16 (2016)

    MATH  Google Scholar 

  34. Zhou, R.G., Fan, P., Tan, C., et al.: Quantum gray-scale image dilation/erosion algorithm based on quantum loading scheme. J. Comput. 29, 220–227 (2018)

    Google Scholar 

  35. Zhou, R.G., Chang, Z.B., Fan, P., et al.: Quantum Image Morphology Processing Based on Quantum Set Operation. Int. J. Theor. Phys. 54, 1974–1986 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Science and Technology Project in 2020 under Grant No.20040501500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WX., Zhou, RG. & Yu, H. Quantum Image Edge Detection Based on Multi-Directions Gray-Scale Morphology. Int J Theor Phys 60, 4162–4176 (2021). https://doi.org/10.1007/s10773-021-04966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04966-y

Keywords

Navigation