Skip to main content
Log in

Shortcut to Adiabatic Two-qubit State Swap in a Superconducting Circuit QED via Effective Drivings

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Optimal two-qubit operation is of significance to quantum information processing. An efficient scheme is proposed for realizing the shortcut to adiabatic two-qubit state swap in a superconducting circuit quantum electrodynamics (QED) via effective drivings. Two superconducting qutrits are coupled to a common cavity field and individual classical drivings. Based on two Gaussian-type Rabi drivings, two-qubit state swap can be adiabatically implemented within a reduced three-state system. To speed up the operation, these two original Rabi drivings are modified in the framework of shortcuts to adiabaticity, instead of adding an extra counterdiabatic driving. Moreover, owing to a shorter duration time, the decoherence effects on the accelerated quantum operation can be mitigated significantly. The strategy could offer an optimized method to construct fast and robust quantum operations on superconducting qubits experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  MATH  ADS  Google Scholar 

  2. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  3. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  4. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. Chin.-Inf. Sci. 63, 180501 (2020)

    Article  MathSciNet  Google Scholar 

  5. Krech, W., Wagner, T.h.: Linear microwave response of a superconducting charge qubit. Phys. Lett. A 275, 159 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Shevchenko, S.N., Kiyko, A.S., Omelyanchouk, A.N., Krech, W.: Dynamic behavior of Josephson-junction qubits: crossover between Rabi oscillations and Landau–Zener transitions. Low Temp. Phys. 31, 569 (2005)

    Article  ADS  Google Scholar 

  7. Shnyrkov, V.I., Wagner, T.h., Born, D., Shevchenko, S.N., Krech, W., Omelyanchouk, A.N., Il’ichev, E., Meyer, H.-G.: Multiphoton transitions between energy levels in a phase-biased Cooper-pair box. Phys. Rev. B 73, 024506 (2006)

    Article  ADS  Google Scholar 

  8. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  9. Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Circuit QED and engineering charge-based superconducting qubits. Phys. Scr. T 137, 014012 (2009)

    Article  ADS  Google Scholar 

  10. Blais, A., Girvin, S.M., Oliver, W.D.: Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247 (2020)

    Article  Google Scholar 

  11. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  12. Gao, G.-L., Song, F.-Q., Huang, S.-S., Wang, H., Yuan, X.-Z., Wang, M.-F., Jiang, N.-Q.: A simple scheme to generate χ -type four-charge entangled states in circuit QED. Chin. Phys. B 21, 044209 (2012)

    Article  ADS  Google Scholar 

  13. Gao, G.L., Cai, G.C., Huang, S.S., Tang, L.Y., Gu, W.J., Wang, M.F., Jiang, N.Q.: \(1 \rightarrow N\) quantum controlled phase gate realized in a circuit QED system. Sci. Chin. Phys. Mech. Astro. 55, 1422 (2012)

    Article  ADS  Google Scholar 

  14. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  15. Billangeon, P.-M., Tsai, J.S., Nakamura, Y.: Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits. Phys. Rev. B 91, 094517 (2015)

    Article  ADS  Google Scholar 

  16. Kim, M.D., Kim, J.: Scalable quantum computing model in the circuit-QED lattice with circulator function. Quantum Inf. Process. 16, 192 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Lucero, E., Kelly, J., Bialczak, R.C., Lenander, M., Mariantoni, M., Neeley, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Reduced phase error through optimized control of a superconducting qubit. Phys. Rev. A 82, 042339 (2010)

    Article  ADS  Google Scholar 

  18. D’Arrigo, A., Paladino, E.: Optimal operating conditions of an entangling two-transmon gate. New J. Phys. 14, 053035 (2012)

    Article  ADS  Google Scholar 

  19. Liebermann, P.J., Wilhelm, F.K.: Optimal qubit control using single flux quantum pulses. Phys. Rev. Appl. 6, 024022 (2016)

    Article  ADS  Google Scholar 

  20. Basilewitsch, D., Marder, L., Koch, C.P.: Dissipative quantum dynamics and optimal control using iterative time ordering: an application to superconducting qubits. Eur. Phys. J. B 91, 161 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bao, S., Kleer, S., Wang, R., Rahmani, A.: Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: Preparing a maximally entangled state with singular bang-bang protocols. Phys. Rev. A 97, 062343 (2018)

    Article  ADS  Google Scholar 

  22. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  23. Vitanov, N.V., Rangelov, A.A., Shore, B.W., Bergmann, K.: Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)

    Article  ADS  Google Scholar 

  24. Bergmann, K., et al.: Roadmap on STIRAP applications. J. Phys. B: At. Mol. Opt. Phys. 52, 202001 (2019)

    Article  ADS  Google Scholar 

  25. Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martnez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  26. Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.-C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)

    Article  ADS  Google Scholar 

  27. Chen, J., Wei, L.F.: Deterministic generations of photonic NOON states in cavities via shortcuts to adiabaticity. Phys. Rev. A 95, 033838 (2017)

    Article  ADS  Google Scholar 

  28. Lu, X. -J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)

    Article  ADS  Google Scholar 

  29. Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)

    Article  ADS  Google Scholar 

  30. Chen, Y.-H., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity. Ann. Phys. 530, 1700351 (2018)

    Article  MathSciNet  Google Scholar 

  31. Wang, T., Zhang, Z., Xiang, L., Jia, Z., Duan, P., Cai, W., Gong, Z., Zong, Z., Wu, M., Wu, J., Sun, L., Yin, Y., Guo, G.: The experimental realization of high-fidelity shortcut-to-adiabaticity quantum gates in a superconducting Xmon qubit. New J. Phys. 20, 065003 (2018)

    Article  ADS  Google Scholar 

  32. Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Optimal superadiabatic population transfer and gates by dynamical phase corrections. Quantum Sci. Technol. 3, 024006 (2018)

    Article  ADS  Google Scholar 

  33. Yan, T., Liu, B.-J., Xu, K., Song, C., Liu, S., Zhang, Z., Deng, H., Yan, Z., Rong, H., Huang, K., Yung, M.-H., Chen, Y., Yu, D.: Experimental realization of nonadiabatic shortcut to Non-Abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019)

    Article  ADS  Google Scholar 

  34. Yu, W.-R., Ji, X.: Fast preparingW state via a chosen path shortcut in circuit QED. Quantum Inf. Process. 18, 247 (2019)

    Article  ADS  Google Scholar 

  35. Chu, J., Li, D., Yang, X., Song, S., Han, Z., Yang, Z., Dong, Y., Zheng, W., Wang, Z., Yu, X., Lan, D., Tan, X., Yu, Y.: Realization of superadiabatic Two-Qubit gates using parametric modulation in superconducting circuits. Phys. Rev. Appl. 13, 064012 (2020)

    Article  ADS  Google Scholar 

  36. Yan, R.-Y., Feng, Z.-B.: Two-Qubit State swap and entanglement creation in a superconducting circuit QED via counterdiabatic drivings. Adv. Quantum Technol. 3, 2000088 (2020)

    Article  Google Scholar 

  37. Feng, Z.-B.: Coupling charge qubits via Raman transitions in circuit QED. Phys. Rev. A 78, 032325 (2008)

    Article  ADS  Google Scholar 

  38. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  39. Vitanov, N.V., Stenholm, S.: Analytic properties and effective two-level problems in stimulated Raman adiabatic passage. Phys. Rev. A 55, 648 (1997)

    Article  ADS  Google Scholar 

  40. Li, Y.-C., Chen, X.: Shortcut to adiabatic population transfer in quantum three-level systems: Effective two-level problems and feasible counterdiabatic drivingPhys. Rev. A 94, 063411 (2016)

    Article  Google Scholar 

  41. Andersen, C.K., Mϕ lmer, K.: Circuit QED Flip-Flop memory with all-microwave switching. Phys. Rev. Appl. 3, 024002 (2015)

  42. Yan, R.-Y., Feng, Z.-B.: Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED. Opt. Laser Technol. 135, 106699 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Henan Province under Grants No. 212300410388 and No. 212300410238, the Key Research Project in Universities of Henan Province under Grant No. 20B140016, the “316” Project Plan of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Dong, XP., Yan, RY. et al. Shortcut to Adiabatic Two-qubit State Swap in a Superconducting Circuit QED via Effective Drivings. Int J Theor Phys 60, 4091–4102 (2021). https://doi.org/10.1007/s10773-021-04958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04958-y

Keywords

Navigation