Skip to main content
Log in

Demonstrate Absolutely Maximally Entangled of Four- and Eight-qubit States Inexistence via Simple Constraint Condition

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A pure multi-qubit state is called absolutely maximally entangled if all reduced states obtained by tracing out at least half of the particles are maximally mixed. Recently, Felix Huber proved that the absolutely maximally seven-qubit entangled state does not exist. In this letter, we investigate the relation of reduced density matrix and the local unitary transformation invariants of four- and eight-qubit entangled states. Using some constraint conditions, for four- and eight-qubit states, we can prove that absolutely maximally entangled states do not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Claude, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Facchi, P., Marzolino, U., Parisi, G., et al.: Phase transitions of bipartite entanglement. Phys. Rev. Lett. 101, 050502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Leibfried, D., Knill, E., Seidelin, S., et al.: Creation of a six-atom ‘Schrdinger cat’ state. Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  6. Monz, T., Schindler, P., Barreiro, J.T., et al.: 14-Qubit entanglement: Creation and Coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  7. Coffman, V., Kundu, J., Wotters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  8. Verstraete, F., Dehaene, J., De Moor, B.: Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A 68, 012103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004)

    Article  ADS  Google Scholar 

  10. Facchi, P., Florio, G., Parisi, G., et al.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304(R) (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kraus, B.: Local unitary equivalence of multipartite pure states. Phys. Rev. Lett. 104, 020504 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chitambar, E., Cui, W., Lo, H.K.: Increasing entanglement monotones by separable operations. Phys. Rev. Lett. 108, 240504 (2012)

    Article  ADS  Google Scholar 

  13. de Vicente, J.I., Spee, C., Kraus, B.: The maximally entangled set of multipartite quantum states. Phys. Rev. Lett. 111, 110502 (2013)

    Article  Google Scholar 

  14. Zha, X.W., Yuan, C.Z., Zhang, Y.P.: Generalized criterion for a maximally multi-qubit entangled state. Laser Phys. Lett. 10, 045201 (2013)

    Article  ADS  Google Scholar 

  15. Zhao, J.Y., Zhao, H., Jing, N.H., et al.: Detection of genuine multipartite entanglement in multipartite systems. Int. J. Theor. Phys. 58, 3181 (2019)

    Article  MathSciNet  Google Scholar 

  16. Goyeneche, D., Zyczkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)

    Article  ADS  Google Scholar 

  17. Goyeneche, D., Alsina, D., Latorre, J.I., et al.: Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A 92, 032316 (2015)

    Article  ADS  Google Scholar 

  18. Wu, Z.K., Wang, Z.P.: Optical vortices in the Ginzburg-Landau equation with cubic-quintic nonlinearity. Nonlinear Dyn. 94, 2363 (2018)

    Article  Google Scholar 

  19. Wu, Z.K., Wang, Z.P., Guo, H., et al.: Self-accelerating Airy Laguerre-Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium. Opt. Express 25, 30468 (2017)

    Article  ADS  Google Scholar 

  20. Zhang, Y.G., Wu, Z.K., Ru, J.M., et al.: Evolution of the Bessel-Gaussian beam modeled by the fractional schrödinger equation. J. Opt. Soc. A. B 37, 3414 (2020)

    Article  ADS  Google Scholar 

  21. Huber, F., Gühne, O., Siewert, J.: Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett. 118, 200502 (2016)

    Article  Google Scholar 

  22. Eltschka, C., Siewert, J.: Distribution of entanglement and correlations in all finite dimensions. Quantum 2, 64 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was not supported by any Funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this research or paper.

Corresponding author

Correspondence to Yi Hu.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, P., Hu, Y. Demonstrate Absolutely Maximally Entangled of Four- and Eight-qubit States Inexistence via Simple Constraint Condition. Int J Theor Phys 60, 3488–3493 (2021). https://doi.org/10.1007/s10773-021-04924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04924-8

Keywords

Navigation