Skip to main content
Log in

Key Expanding in Measurement-Device-Independent Quantum Key Distribution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A common problem of a discrete-variable quantum key distribution (QKD) protocol is that related to its key rate. This work proposes a solution to this problem: the procedure key expanding. The key expanding not only increases the key size (respectively, key rate) of the final secret key, but also increases the efficiency of a QKD scheme. The contribution comes from using a part of the classical data exchanged in the QKD. This process can be implemented along with privacy amplification, thus not requiring any additional time resource. Also, it can be used in combination with the other solution to the mentioned problem, namely high-dimensionality. The combination allows key rates that have not been obtainable so far. The key expanding is verified to be a secure procedure—it does not leak information about the final key to an eavesdropper. Moreover, the paper presents the key expanding in the case of the well-known measurement-device-independent QKD protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C., Brassard, G.: In: Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, pp 175–179, Bangalore (1984)

  2. Ekert, A.: Rev, Phys. Lett. 67, 661 (1991)

    Article  Google Scholar 

  3. Bennett, C., Brassard, G., Mermin, N.: Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.: Rev, Phys. Lett. 68, 3121 (1992)

    Article  Google Scholar 

  5. Inoue, K., Waks, E., Yamamoto, Y.: Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  6. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Appl. Phys. Lett. 87, 194108 (2005)

    Article  ADS  Google Scholar 

  7. Lo, H.-K., Curty, M., Qi, B.: Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Mayers, D., Yao, A.C.-C.: In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS98), p 503. IEEE Computer Society, Washington (1998)

  9. Acín, A., et al.: Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  10. Lo, H.-K., Chau, H.F.: Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  11. Jo, Y., Son, W.: Phys. Rev. A 94, 052316 (2016)

    Article  ADS  Google Scholar 

  12. Dellantonio, L., Sørensen, A., Bacco, D.: Phys. Rev. A 98, 062301 (2018)

    Article  ADS  Google Scholar 

  13. Xu, F.: Rev, Phys. A 92, 012333 (2015)

    Article  Google Scholar 

  14. Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Phys. Rev. A 97, 042328 (2018)

    Article  ADS  Google Scholar 

  15. Zhang, C.-M., et al.: Phys. Rev. A 90, 034302 (2014)

    Article  ADS  Google Scholar 

  16. Liu, H., et al.: Phys. Rev. Lett. 122, 160501 (2019)

    Article  ADS  Google Scholar 

  17. Ma, H.-X., et al.: Phys. Rev. A 97, 042329 (2018)

    Article  ADS  Google Scholar 

  18. Zhou, C., et al.: Phys. Rev. A 91, 022313 (2015)

    Article  ADS  Google Scholar 

  19. Zhang, Y.-C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  20. Puthoor, I., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, C.-H., Zhang, C.-M., Wang, Q.: Phys. Rev. A 99, 052325 (2019)

    Article  ADS  Google Scholar 

  22. Cao, W.-F., et al.: Phys. Rev. 97(97), 012313 (2018)

    Article  Google Scholar 

  23. Shan, Y.-Z., et al.: Phys. Rev. A 90, 042334 (2014)

    Article  ADS  Google Scholar 

  24. Yang, X., et al.: Phys. Rev. A 93, 052303 (2016)

    Article  ADS  Google Scholar 

  25. Abruzzo, S., Kampermann, H., Bruß, D.: Phys. Rev. A 89, 012301 (2014)

    Article  ADS  Google Scholar 

  26. Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z.-M., He, G.: Phys. Rev. A 93, 022325 (2016)

    Article  ADS  Google Scholar 

  27. Cui, Z.-X., et al.: Sci. China Phys. Mech. Astron. 62, 110311 (2019)

    Article  ADS  Google Scholar 

  28. Yin, H. -L., Fu, Y.: Sci. Rep. 9, 3045 (2019)

    Article  ADS  Google Scholar 

  29. Long, G.L., Liu, X.S.: Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  30. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  31. Wang, C., Deng, F., Li, Y., Liu, X., Long, G.: Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Long, G.L.: Phys.Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  33. Banerjee, A., Pathak, A.: Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  34. Tsai, C.W., Hsieh, C.R., Hwang, T.: Eur. Phys. J. D 61, 783 (2011)

    Article  ADS  Google Scholar 

  35. Niu, P.-H., et al.: Sci. Bull. 63, 1345–1350 (2018)

    Article  Google Scholar 

  36. Zhou, Z.R., et al.: Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  37. Wu, J., et al.: Quantum Eng. https://doi.org/10.1002/que2.26 (2019)

  38. Wang, C.: Fundam. Res. 1, 91–92 (2021)

    Article  Google Scholar 

  39. Hassanpour, S., Houshmand, M.: QIP 14, 739 (2014)

    Google Scholar 

  40. Joy, D., Surendran, S., Sabir, M.: QIP 16, 1 (2017)

    Google Scholar 

  41. Yan, F., Zhang, X.: Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  42. Gao, T., Yan, F., Wang, X.: Chin. Phys. 14, 893 (2005)

    Article  Google Scholar 

  43. Zhu, A., Xia, Y., Fan, Q., Zhang, S.: Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  44. Pathak, A.: QIP 14, 2195 (2015)

    Google Scholar 

  45. Cao, Z., Li, Y., Peng, J., Chai, G., Zhao, G.: Int. J. Theor. Phys. 57, 3632 (2018)

    Article  Google Scholar 

  46. Gong, L.-H., et al.: Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  47. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Ann. Phys. 531, 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  48. Sun, F.: Quantum Eng. https://doi.org/10.1002/que2.35 (2020)

  49. Kwek, L.-C., et al.: AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  50. Islam, N.: High-Rate, High-Dimensional Quantum Key Distribution Systems. Springer Theses Springer Nature, Switzerland AG (2018)

    Book  MATH  Google Scholar 

  51. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Light Sci Appl 7, 17146 (2018)

    Article  Google Scholar 

  52. Bennett, C. h., Brassard, G., Crepeau, C., Maurer, U.: IEEE Trans. Inf. Theory 41, 1915–1923 (1995)

    Article  Google Scholar 

  53. Brassard, G., Salvail, L.: Advances in Cryptology — EUROCRYPT ’93. EUROCRYPT 1993 Lecture Notes in Computer Science, vol. 765. Springer, Berlin, Heidelberg (1994)

    Google Scholar 

  54. Cabello, A.: Rev, Phys. Lett. 85, 5635 (2000)

    Article  Google Scholar 

  55. Wilde, M.: Quantum Information Theory, p 275. Cambridge University Press, UK (2017)

    Book  Google Scholar 

  56. Shannon, C.: Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the programme YRPD-2020, funded by National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bebrov.

Ethics declarations

Conflict of Interests

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(CCP 3.23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebrov, G. Key Expanding in Measurement-Device-Independent Quantum Key Distribution. Int J Theor Phys 60, 3566–3577 (2021). https://doi.org/10.1007/s10773-021-04919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04919-5

Keywords

Navigation