Skip to main content
Log in

Quantum Image Encryption Based on Quantum Image Decomposition

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Aiming at the slow processing speed of classic image encryption algorithms and the security analysis of existing quantum image encryption algorithms, this paper combines the representation method of quantum images and proposes a quantum image encryption algorithm based on image correlation decomposition. Using the principle of quantum state superposition and measurement, the association between image pixels is established, the image is decomposed into a series of feature sub-images and stored in a complete binary tree set, and different sub-images are operated and encrypted by random phase operation and quantum rotation operation. Then superimpose all the sub-images to obtain the ciphertext image. The algorithm has a larger key space so that it can resist brute force attacks. At the same time, the quantum encryption algorithm has lower computational complexity than classic encryption algorithms. In addition, because the ciphertext image is transmitted in the communication channel in the form of a quantum state, the security of quantum image encryption also surpasses the security of classical image encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sen, J.: Homomorphic encryption-theory and application. In: Theory and Practice of Cryptography and Network Security Protocols and Technologies, pp 1–21 (2013)

  2. Saeed, F., Rashid, M.: Integrating classical encryption with modern technique. IJCSNS Int. J. Comput. 280, 280–285 (2010)

    Google Scholar 

  3. Li, Z., et al: A novel plaintext-related image encryption scheme using hyper-chaotic system. Nonlinear Dynam. 94.2, 1319–1333 (2018)

    Article  Google Scholar 

  4. Mohan, M., Kavitha Devi, M K, Jeevan Prakash, V.: Security analysis and modification of classical encryption scheme. Indian J. Sci. Technol. 8.8, 542–548 (2015)

    Article  Google Scholar 

  5. Alagic, G., et al: Computational security of quantum encryption. In: International conference on information theoretic security. Springer, Cham (2016)

  6. Steane, A.: Quantum computing. Rep. Prog. Phys. 2(117), 61 (1998)

    MathSciNet  Google Scholar 

  7. Cao, Y., et al: Quantum chemistry in the age of quantum computing. Chem. Rev. 119.19, 10856–10915 (2019)

    Article  Google Scholar 

  8. National Academies of Sciences: Engineering, and Medicine. Quantum computing: progress and prospects. National Academies Press, Washington (2019)

    Google Scholar 

  9. Dyakonov, M.: When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. Here’s why: The case against: Quantum computing. IEEE Spectrum 56.3, 24–29 (2019)

    Article  Google Scholar 

  10. Jin, B., Cruz, L., Goncalves, N.: Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access 8, 123649–123661 (2020)

    Article  Google Scholar 

  11. Yan, F., Venegas-Andraca, S.E.: Quantum Image Processing. Springer, Berlin (2020)

    Book  Google Scholar 

  12. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process 16.2, 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yuan, S., et al: Quantum image edge detection algorithm. Int. J. Theoret. Phys. 58.9, 2823–2833 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chakraborty, S., Mandal, S. B., Shaikh, S. H.: Quantum image processing: challenges and future research issues. Int. J. Inf. Technol. 1–15 (2018)

  15. Dendukuri, A., Luu, K.: Image Processing in Quantum Computers. arXiv:http://arxiv.org/abs/1812.11042 (2018)

  16. SheXiang, J., et al: Improved quantum image median filtering in the spatial domain. Int. J. Theoret. Phys. 58.7, 2115–2133 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Venegas-Andraca, S.E., Ball, J. L.: Processing images in entangled quantum systems. Quantum Inform. Process. 9.1, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  18. Goldin, M.A., Francisco, D., Ledesma, S.: Classical images as quantum entanglement: an image processing analogy of the GHZ experiment. Opt. Commun. 284, 2089–2093 (2011)

    Article  ADS  Google Scholar 

  19. Zhou, Ri-Gui, et al: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theoret. Phys. 52.6, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  20. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inform. Process. 14.5, 1693–1715 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Caraiman, S., Manta, V.: Image representation and processing using ternary quantum computing. In: International Conference on Adaptive and Natural Computing Algorithms. Springer, Berlin (2013)

  22. Wang, J., et al: Quantum image encryption algorithm based on quantum key image. Int. J. Theoret. Phys. 58.1, 308–322 (2019)

    Article  Google Scholar 

  23. Soto, T.E.: Quantum image processing using Gaussian-Hermite filters Quantum information and Computation, XI. vol. 8749. International society for optics and photonics (2013)

  24. Xian-Hua, S., et al: Quantum image encryption based on restricted geometric and color transformations. Quantum inform. process. 13.8, 1765–1787 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Hey, T.: Quantum computing: an introduction. Comput. Control Eng. J. 10.3, 105–112 (1999)

    Article  Google Scholar 

  26. Theus, M., Shor, P.W.: Quantum computing. Doc. Math. 1.1000, 467–486 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Ri-Gui, Z., Sun, Y.-J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inform. Process. 14.5, 1717–1734 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Yu-Guang, Y., Zhao, Q.-Q., Sun, S.-J.: Novel quantum gray-scale image matching. Optik 126.22, 3340–3343 (2015)

    Google Scholar 

  29. Naseri, M., et al: A new quantum gray-scale image encoding scheme. Commun. Theor. Phys. 2(215), 69 (2018)

    Google Scholar 

  30. Hui-Qiang, W., et al: A secret sharing scheme for quantum gray and color images based on encryption. Int. J. Theoret. Phys. 58.5, 1626–1650 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No.61772295, 61572270, and 61173056). the PHD foundation of Chongqing Normal University(No.19XLB003). the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-M202000501). Chongqing Technology Innovation and application development special general project(cstc2020jscx-lyjsAX0002). Research and innovation projects of graduate students in Chongqing.

Author information

Authors and Affiliations

Authors

Contributions

Jinlei Zhang: Methodology, Conceptualization, Original Draft. Zhijie Huang: Methodology. Xiang Li: Formal analysis, Review and Editing. Mingqiu Wu: Review and Editing. Xiaoyu Wang: Review and Editing. Yumin Dong: Project administration, Funding acquisition.

Corresponding author

Correspondence to Yumin Dong.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, Z., Li, X. et al. Quantum Image Encryption Based on Quantum Image Decomposition. Int J Theor Phys 60, 2930–2942 (2021). https://doi.org/10.1007/s10773-021-04862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04862-5

Keywords

Navigation