Skip to main content
Log in

Zp-Graded Wigner Algebra : Coherent States and Thermodynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we extend the ordinary parity into more general one which we call a Zp-graded parity. Using this we present Zp-graded Wigner algebra. We discuss the coherent states for Zp-graded Wigner algebra. Finally we discuss thermodynamics for Zp-boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wigner, E.P.: . Phys. Rev. 77, 711 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  2. Brink, L., Hansson, T.H., Vasiliev, M.A.: . Phys. Lett. B286, 109 (1992)

    Article  ADS  Google Scholar 

  3. Calogero, F.: . J. Math. Phys. 2191(2197), 10 (1969)

    Google Scholar 

  4. Calogero, F.: . J. Math. Phys. 12, 419 (1971)

    Article  ADS  Google Scholar 

  5. Vasiliev, M.A.: . Int. J. Mod. Phys. A6, 1115 (1991)

    Article  ADS  Google Scholar 

  6. Brzezinski, T., Egusquiza, T., Macfarlane, A.J.: . Phys. Lett. B311, 202 (1993)

    Article  ADS  Google Scholar 

  7. Turbiner, A.: . Phys. Lett. B 320, 281 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Polychronakos, A.P.: . Phys. Rev. Lett. 69, 703 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Macfarlane, A.J.: . J. Math. Phys 35, 1054 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Rubakov, V.A., Spiridonov, V.P.: . Mod. Phys. Lett. A 3, 1337 (1988)

    Article  ADS  Google Scholar 

  11. Khare, A.: . J. Phys. A: Math. Gen. 25, L749 (1992)

    Article  ADS  Google Scholar 

  12. Tomiya, M.: . J. Phys. A: Math. Gen. 25, 4699 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Beckers, J., Debergh, N.: . Nucl. Phys. B 340, 767 (1990)

    Article  ADS  Google Scholar 

  14. Chenaghlou, A., Fakhri, H.: . Int. J. Mod. Phys. A 18, 939 (2003)

    Article  ADS  Google Scholar 

  15. Wang, C.W., Wang, J., Liu, Y.S., Li, J., Peng, X.L., Jia, C.S., Zhang, L.H., Yi, L.Z., Liu, J.Y., Li, C.J., Jia, X.: . Journal of Molecular Liquids 321, 114912 (2021)

    Article  Google Scholar 

  16. Jia, C.S., Li, J., Liu, Y.S., Peng, X.L., Jia, X., Zhang, L.H., Jiang, R., Li, X.P., Liu, J.Y., Zhao, Y.L.: . Journal of Molecular Liquids 315, 113751 (2020)

    Article  Google Scholar 

  17. Wang, J., Jia, C.S., Li, C.J., Peng, X.L., Zhang, L.H., Liu, J.Y.: . ACS Omega 4, 19193 (2019)

    Article  Google Scholar 

  18. Jia, C.S., Zhang, L.H., Peng, X.L., Luo, J.X., Zhao, Y.L., Liu, J.Y., Guo, J.J., Tang, L.D.: . Chem. Eng. Sci. 202, 70 (2019)

    Article  Google Scholar 

  19. Jia, C.S., Wang, C.W., Zhang, L.H., Peng, X.L., Tang, H.M., Liu, J.Y., Xiong, Y., Zeng, R.: . Chem. Phys. Lett. 692, 57 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for a thorough reading of our manuscript and for constructive suggestions. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2015R1D1A1A01057792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hassanabadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Now let us derive the (43). For j = 0 we have

$$ [ pk ]_p = pk $$
(119)

For j ≠ 0 we have

$$ \begin{array}{@{}rcl@{}} [pk+j ]_p &=& pk +j + \nu \sum\limits_{r=1}^{p-1} \frac{ 1 - q^{-rj}}{1-q^{-r}} \\ &=&pk+j + \nu (p-1) + \nu \sum\limits_{r=1}^{p-1} \sum\limits_{s=1}^{j-1} q^{-rs} \\ &=&pk+j + \nu (p-1) + \nu \sum\limits_{s=1}^{j-1} \sum\limits_{r=1}^{p-1} q^{-rs} \\ &=& pk+j + (p-1) \nu - \nu (j-1) \\ &=& pk +j + (p-j) \nu \end{array} $$
(120)

which completes the derivation of the (43).

Appendix B

Now let us prove the (45). We have for n = pk

$$ \begin{array}{@{}rcl@{}} \sum\limits_{l=0}^{p-1} [ n + l]_p &=&\sum\limits_{l=0}^{p-1} [ pk +j + l]_p \\ &=& pk + \sum\limits_{l=1}^{p-1} (p k + l + (p-l) \nu ) \\ &=& p \left[ pk + \frac{p-1}{2} (1 + \nu) \right] \end{array} $$

We have for n = pk + j (j≠ 0 )

$$ \begin{array}{@{}rcl@{}} \sum\limits_{l=0}^{p-1} [ n + l]_p &=&\sum\limits_{l=0}^{p-1} [ pk +j + l]_p \\ &=& \sum\limits_{l=j}^{p-1} \left( pk + l + (p - l ) \nu \right) + p (k+1) + \sum\limits_{l=1}^{j-1} (p (k+1) + l + (p-l) \nu ) \\ &=& p \left[ pk + j + \frac{p-1}{2} (1 + \nu) \right] \end{array} $$

Appendix C

For k ≥ 1 We have

$$ \begin{array}{@{}rcl@{}} a^p |pk + j \rangle &=& \sqrt{ \prod\limits_{l=0}^{p-1} [pk+j-l]_p} |p(k-1) + j \rangle \\ &=& \sqrt{[pk+j]_p [pk+j-1]_p{\cdots} [pk+1]_p [pk]_p [pk - 1]_p {\cdots} [pk - (p - j - 1)]_p } |p(k - 1) + j \rangle \\ &=& \sqrt{ [pk]_p \prod\limits_{l=1}^{j} [pk+l]_p \prod\limits_{m=1}^{p-j-1} [pk-m]_p } |p(k-1) + j \rangle \\ &=& \sqrt{ pk \prod\limits_{l=1}^{j} (pk + l + (p-l) \nu) \prod\limits_{m=1}^{p-j-1} (pk -m + m \nu) } |p(k-1) + j \rangle \end{array} $$

Appendix D

We have

$$ \begin{array}{@{}rcl@{}} \langle N \rangle_p &=& \langle z | N | z \rangle \\ &=& (e^{(p)} (|z|^2))^{-1} \sum\limits_{j=0}^{p-1} \sum\limits_{k=0}^{\infty} (pk+j) \frac{|z|^{2 (pk+j)}}{[pk+j]_p!} \\ &=& (e^{(p)} (|z|^2))^{-1} \sum\limits_{j=0}^{p-1} \sum\limits_{k=0}^{\infty} pk \frac{|z|^{2 (pk+j)}}{[pk+j]_p!} + (e^{(p)} (|z|^2))^{-1} \sum\limits_{j=0}^{p-1} \sum\limits_{k=0}^{\infty} j \frac{|z|^{2 (pk+j)}}{[pk+j]_p!} \\ &=& (e^{(p)} (|z|^2))^{-1} \sum\limits_{j=0}^{p-1} \sum\limits_{k=0}^{\infty} pk \frac{|z|^{2 (pk+j)}}{[pk+j]_p!} + (e^{(p)} (|z|^2))^{-1} \sum\limits_{j=0}^{p-1} j C_j^{(p)}(|z|^2) \end{array} $$
(121)

Here

$$ \begin{array}{@{}rcl@{}} I &=& \sum\limits_{k=0}^{\infty} pk \frac{|z|^{2 (pk+j)}}{[pk+j]_p!} \\ &=& \sum\limits_{k=0}^{\infty} \frac{pk (|z|^2)^{pk+j}}{ [j]_p! p^{pk} k! {\prod}_{l=1}^j \left( 1 + \frac{l+ (p-l)\nu}{p} \right)_k {\prod}_{m=1}^{p-j-1} \left( 1 + \frac{m \nu -m }{p} \right)_k } \\ &=& \sum\limits_{k=0}^{\infty} \frac{ (|z|^2)^{p(k+1)+j}}{ [j]_p! p^{p(k+1)} k! {\prod}_{l=1}^j \left( 1 + \frac{l+ (p-l)\nu}{p} \right)_{k+1} {\prod}_{m=1}^{p-j-1} \left( 1 + \frac{m \nu -m }{p} \right)_{k+1} } \end{array} $$

Using (a)k+ 1 = a(a + 1)k we get

$$ \begin{array}{@{}rcl@{}} I &=& \frac{|z|^{2p}}{ p^{p-1}{\prod}_{l=1}^j \left( 1 + \frac{l+ (p-l)\nu}{p} \right) {\prod}_{m=1}^{p-j-1} \left( 1 + \frac{m \nu -m }{p} \right)} \sum\limits_{k=0}^{\infty} \frac{ (|z|^2)^{pk+j}}{ [j]_p! p^{pk} k! {\prod}_{l=1}^j \left( 2 + \frac{l+ (p-l)\nu}{p} \right)_{k} {\prod}_{m=1}^{p-j-1} \left( 2 + \frac{m \nu -m }{p} \right)_{k} } \\ &=& \frac{|z|^{2p} [p]_p [j]_p!}{ [p+j]_p!} C_j^{(p, 2)} (|z|^2) \end{array} $$
(122)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, W.S., Hassanabadi, H. Zp-Graded Wigner Algebra : Coherent States and Thermodynamics. Int J Theor Phys 60, 2254–2271 (2021). https://doi.org/10.1007/s10773-021-04845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04845-6

Keywords

Navigation