Skip to main content
Log in

Quantum Private Transfer with Seven Entangled States for Cross-Domain Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper proposes a quantum teleportation scheme based on seven particle entangled states, which can achieve complete security and improve efficiency. In our scheme, the quantum channel is constructed by selecting seven-qubit entangled states in order to improve the efficiency of the protocol. The protocol performs cross-domain identity authentication before teleportation, and the sender and receiver need the consent of the controller to obtain the quantum information sent by the receiver. Further improve the security of the protocol. If the controller agrees, he needs to measure his own particles, and then send the measurement results to the communicating parties. The sender and the receiver use the results provided by the controller to perform appropriate unitary operations on their particles, so that the unknown quantum state can be reconstructed to achieve asymmetric controlled bidirectional teleportation. The quantum channel of this scheme has higher transmission efficiency in the experiment, and the corresponding measurement operation is also simple and convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, M. Weinfurter and A. Zeilinger, “Experimental quantum teleportation. Nature,” 1997, 390(6660): 575一579

  2. C. H. Bennett et al., “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., 1993, 70(13):1895一1899

  3. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A. 49, 1473–1476 (1994)

    Article  ADS  Google Scholar 

  4. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087–4090 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Davidovich, L., Zagury, N., Brune, M.: Teleportation of an atomic state between cavities using non-local microwave fields. Phys. Rev. A. 50(02), (1994)

  6. Brassard, G., Mann, A.: Measurement of the bell operator and quantum teleportation. Phys. Rev. A. 51(03), R 1727-R 1730 (1995)

    ADS  Google Scholar 

  7. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variable. Phys. Rev. Lett. 80(4), 869–872 (1998)

    Article  ADS  Google Scholar 

  8. Bandyupadhyay, S.: Teleportation secret sharing with pure entangle states. Phys.Rev.A. 62, 012308 (2000)

    Article  ADS  Google Scholar 

  9. Liu, M., Guo, G.C.: Quantum teleportatlon of a three particle entangle state. Chin. Phys. Lett. I 9, 456 (2002)

    ADS  Google Scholar 

  10. Zukowski, M., Zeilinger, A., Horne, M.A.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  11. Barenco, A., Deutsch, D., Ekert, A.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083–4086 (1995)

    Article  ADS  Google Scholar 

  12. Zheng, S.B., Guo, G.C.: Teleportation of superpositions of macroscopic states of a cavity field. Phys. Lett. A. 236, I 80 (1997)

    Article  Google Scholar 

  13. A Grudka, R W Chhajlany, “Two-way teleportation,” Quant.-Phys., 2003, 0307043

  14. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394–4400 (1998) Chin. Phys. Lett.,2002,19:456

    Article  ADS  MathSciNet  Google Scholar 

  15. Huelga S F, Vaccaro J A, “Chefles A, et al. Quantum remote control: Teleportationof unitary operation,” Phys.Rev.A.,63,2001(4):042303

    Article  ADS  Google Scholar 

  16. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2(10), 678–682 (2006)

    Article  Google Scholar 

  17. Dai, H.Y., Zhang, M., Li, C.Z.: Probabilistic teleportation of an unknown entangled state of two three-level particles by a partial entangled state of three-level particles. Phys. Lett. A. 323, 360 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zha, X.W., Song, H.Y., Qi, J.X., et al.: A maximally entangled seven-qubit state. J. Phys. A Math. Theor. 45(25), 255302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Fu, H.Z., Tian, X.L., Hu, Y., et al.: A general method of selecting quantum channel for bidirectional quantum teleportation[J]. Int. J. Theor. Phys. 53, 1840–1847 (2014)

    Article  Google Scholar 

  20. Zheng, X.: Controlled two-way quantum teleportation based on five particle cluster state. Chin. J Quant. Electron. 33(2), 178–181 (2016)

    Google Scholar 

  21. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state[J]. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    Article  Google Scholar 

  22. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state[J]. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-MS-286), and Basic Scientific Research Project of Liaoning Provincial Department of Education (Grant No. LJC202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhang, Y. & Chen, L. Quantum Private Transfer with Seven Entangled States for Cross-Domain Environment. Int J Theor Phys 60, 2753–2765 (2021). https://doi.org/10.1007/s10773-021-04835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04835-8

Keywords

Navigation