Skip to main content
Log in

Mth Coherent State Induces Patterns in the Interaction of a Two-Level Atom in the Presence of Nonlinearities

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, the Mth coherent state (Mth CS) has been defined to be the resultant state of applying the number operator M times on the coherent state (CS) (Othman, Int. J. Theor. Phys. 58: 2451, 2019). In this article, we study the interaction between a two-level atom and a quantized single-mode field with intensity-dependent coupling in a Kerr medium. The Mth CS is assumed to be the interacting field with the atom. We study the dynamical behavior of the inversion, Q Mandel, linear squeezing, amplitude squared squeezing, and field entropy for different parameters and M values. We find that a certain pattern in the dynamics is induced with the Mth CS that is not present with the CS. We term this pattern as the “resolution phenomenon”. It is related to a semi-regular pattern being apparent in a specific region while after or before this region the pattern is overlapping. We also discover, in general, that the Mth CS of large M values for a given dynamic tends to have more periodicity, wider peaks, less growing/decaying rates, and more covering its range. Many other classical/nonclassical features are discussed for the concerning measurements. Finally, in the end, we propose some potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaynes, E. T., Cummings, F. W.: . Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  2. Yoo, H. I., Eberly, J. H.: . Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  3. Scully, M. O., Zubairy, M. S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  4. Walls, D. F., Milburn, G. J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  5. Perina, J.: Quantum Statistics of Linear and Nonlinear Optical Phenomena. Reidel, Dordrecht (1984)

    Book  Google Scholar 

  6. Knight, P. L., Radmore, P. M.: . Phys. Lett. A 90, 342 (1982)

    Article  ADS  Google Scholar 

  7. Eberly, J. H., Narozhny, N. B., Sanchez-Mondragon, J. J.: . Phys. Rev. Lett. 44, 1323 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  8. Meystre, M. S., Zubairy, P.: . Phys. Lett. A 89, 390 (1982)

    Article  ADS  Google Scholar 

  9. Aravind, P. K., Hu, G. H.: . Physica B+C 150, 427 (1988)

    Article  ADS  Google Scholar 

  10. Fang, M. F., Swain, S., Zhou, P.: . Phys. Rev. A 63, 013812 (2000)

    Article  ADS  Google Scholar 

  11. Dodonov, V.V., Man’ko, I.: Theory of Nonclassical States of Light. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  12. Kilin, S. Y., Horoshko, D. B.: . Phys. Rev. Lett. 74, 5206 (1995)

    Article  ADS  Google Scholar 

  13. Man’ko, V. I., Marmo, G., Sudarshan, E. C. G., Zaccaria, F.: . Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  14. Cordero, S., Récamier, J.: . J. Phys. A 45, 385303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. de los Sántos-Sanchez, O, Récamier, J.: . J. Phys. B: At. Mol. Opt. Phys. 45, 015502 (2012)

    Article  ADS  Google Scholar 

  16. Odibat, Z.: . Comp. Math. Appl. 59, 3 (2010)

    Google Scholar 

  17. El Anouz, K., El Allati, A., Salah, A., Saif, F.: . Int. J. Theor. Phys. 59, 1460 (2020)

    Article  Google Scholar 

  18. Abdel-Wahab, N. H., Salah, A.: . Mod. Phys. Lett. A 34, 1950081 (2019)

    Article  ADS  Google Scholar 

  19. Vaglica, A.: . Phys. Rev. A 52, 3 (1995)

    Article  Google Scholar 

  20. Esmail, S., Salah, A., Hassan, S. S. A.: . Brazilian J. Phys. 49, 438 (2019)

    Article  ADS  Google Scholar 

  21. Cardimona, D. A.: . Phys. Rev. A 41, 5016 (1990)

    Article  ADS  Google Scholar 

  22. Faghihi, M. J., Tavassoly, M. K., Bagheri Harouni, M.: . Laser Phys. A 24, 045202 (2014)

    Article  ADS  Google Scholar 

  23. Abd El-Wahab, N. H., Salah, A.: . Mod. Phys. Lett. B 29, 1550175 (2015)

    Article  ADS  Google Scholar 

  24. Baghshahi, H. R., Tavassoly, M. K., Behjat, A.: . Chin. Phys. B 23, 074203 (2014)

    Article  Google Scholar 

  25. Buck, B., Sukumar, C. V.: . Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  26. Baghshahi, H. R., Tavassoly, M. K., Behjat, A.: . Commun. Theor. Phys. 62, 430 (2014)

    Article  Google Scholar 

  27. Othman, A., Yevick, D.: . Int. J. Theor. Phys. 57, 159 (2018)

    Article  Google Scholar 

  28. El-Orany, F. F. A.: . J. Phys. A: Math. Gen. 37, 6157 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Abdalla, M. S., Khalil, E. M., Obada, A.-S.F.: . Ann. Phys. 322, 2254 (2007)

    Google Scholar 

  30. Mahmood, S., Zubairy, M. S.: . Phys. Rev. A 35, 425 (1987)

    Article  ADS  Google Scholar 

  31. Hekmatara, H., Tavassoly, M. K.: . Opt. Commun. 319, 121 (2014)

    Article  ADS  Google Scholar 

  32. Salah, A., Abdel-Rady, A. S., Osman, A. A., Hassan, S. S. A.: . J. Russian Laser Res. 39, 28 (2018)

    Article  Google Scholar 

  33. Agarwal, G.S.: Quantum Optics. Cambridge Univety Press, Cambridge (2013)

    MATH  Google Scholar 

  34. Eberly, J. H., Narozhny, N. B., Sanchez-Mondragon, J. J.: . Phys. Rev. Lett. 44, 1323 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  35. Averbukh, I. S. h.: . Phys. Rev. A 46, R2205 (1992)

    Article  ADS  Google Scholar 

  36. Brune, M., Hagley, E., Dreyer, J., et al.: . Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  37. Zurek, W. H.: . Nature (London) 412, 712 (2001)

    Article  ADS  Google Scholar 

  38. Agarwal, G. S., Pathak, P. K.: . Phys. Rev. A 70, 053813 (2004)

    Article  ADS  Google Scholar 

  39. Obada, A. S. F., Mabran, M. H., El-Orany, A. A., et al.: . Int. J. Theor. Phys. 35, 1393 (1996)

    Article  Google Scholar 

  40. Milburn, G. J.: . Opt. Acta 31, 671 (1984)

    Article  ADS  Google Scholar 

  41. Shore, B. W., Knight, P. L.: . J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  Google Scholar 

  42. Othman, A., Yevick, D.: . Int. J. Theor. Phys. 57, 2293 (2018)

    Article  Google Scholar 

  43. Dehghani, A., Mojaveri, B., Bahrbeig, R. J.: . J. Russian Laser Res. 40, 121 (2019)

    Article  Google Scholar 

  44. Dehghani, A., Mojaveri, B., Aryaie, M., Alenabi, A. A.: . Quan. Inf. Proc. 18, 148 (2019)

    Article  Google Scholar 

  45. Dehghani, A., Mojaveri, B., Alenabi, A. A.: . J. Math. Phys. 60, 083501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. Othman, A.: . Quan. Inf. & Comp. 19, 0014 (2019)

    MathSciNet  Google Scholar 

  47. Othman, A.: . Int. J. Theor. Phys. 58, 2451 (2019)

    Article  Google Scholar 

  48. Knöll, L., Orl/owski, A.: . Phys. Rev A 51, 1622 (1995)

    Article  ADS  Google Scholar 

  49. OrIowski, A., Paul, H., Kastelewicz, G.: . Phys. Rev. A 52, 1621 (1995)

    Article  ADS  Google Scholar 

  50. Mandel, L.: . Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  51. Glauber, R. J.: . Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  52. Yuen, H. P.: . Phys. Rev. A 13, 2226 (1976)

    Article  ADS  Google Scholar 

  53. Caves, C. M., Schumaker, B. L.: . Phys. Rev. A 31, 3093 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  54. Hong, C. K., Mandel, L.: . Phys. Rev. Lett. 54, 323 (1985)

    Article  ADS  Google Scholar 

  55. Hillery, M.: . Opt. Comm. 62, 135 (1987)

    Article  ADS  Google Scholar 

  56. Werner, R. F.: .. In: Springer Tracts in Modern Physics, vol. 173. Springer, Heidelberg (2001)

  57. Phoenix, S. J. D., Knight, P. L.: Ann. Phys. (N.Y.) 186, 381 (1988)

    Article  ADS  Google Scholar 

  58. Phoenix, S. J. D., Knight, P. L.: . Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  59. Araki, M., Lieb, E.: . Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  Google Scholar 

  60. Sanz, L., Angelo, R. M., Furuya, K.: . J. Phys. A: Math. Gen. 36, 9737 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Taibah University is strongly acknowledged for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Ahmed Othman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Hamiltonian of the system as explained earlier is given as

$$ \hat{H}/\hbar = \omega_{1} |1 \rangle \langle 1|+ \omega_{2} |2 \rangle \langle 2|+ {\Omega} \hat{a}^{\dagger} \hat{a}+ \lambda (\hat{A}^{\dagger} |1 \rangle \langle 2|+ \hat{A} |2 \rangle \langle 1|) +\chi \hat{a}^{\dagger 2} \hat{a}^2. $$
(A.1)

Operating in the interaction picture, this Hamiltonian can be separated into two parts; the natural part \(\hat {H}_{0}\) and the interaction part \(\hat {H}_{I}\) as \(\hat {H}= \hat {H}_{0}+\hat {H}_{I}\) with

$$ \hat{H}_0/\hbar=\omega_{1} |1 \rangle \langle 1|+ \omega_{2} |2 \rangle \langle 2|+ {\Omega} \hat{a}^{\dagger} \hat{a}, \qquad \hat{H}_I/\hbar= \lambda (\hat{A}^{\dagger} |1 \rangle \langle 2|+ \hat{A} |2 \rangle \langle 1|) +\chi \hat{a}^{\dagger 2} \hat{a}^{2}. $$
(A.2)

The interaction Hamiltonian can be calculated from \(\hat {{\mathscr{H}}}= e^{i\hat {H}_{0} t/\hbar } \hat {H}_{I} e^{-i \hat {H}_{0} t/\hbar }\). Employing this identity

$$ \hat{\mathcal{H}}= e^{i\hat{H}_0 t} \hat{H}_{I} e^{-i \hat{H}_0 t}= \hat{H}_I+ \left( \frac{i t}{\hbar} \right) \left[ \hat{H_0}, \hat{H}_{I} \right]+ \frac{1}{2!} \left( \frac{it}{\hbar} \right)^{2} \left[\hat{H}_0, \left[ \hat{H_0}, \hat{H}_{I} \right] \right]+ \cdots, $$
(A.3)

the interaction Hamiltonian \(\hat {{\mathscr{H}}}\) becomes

$$ \hat{ \mathcal{H}}/\hbar = \lambda \left( \hat{A} e^{-i {\Delta} t} |2\rangle \langle 1|+\hat{A}^{\dagger} e^{i{\Delta} t} |1\rangle \langle 2| \right) +\chi \hat{a}^{\dagger 2} \hat{a}^{2}, $$
(A.4)

where Δ is the detuning parameter and equals ω2ω1 −Ω. Then, we apply the Schrödinger equation (SE) in the interaction picture

$$ \frac{\partial|\psi\rangle}{\partial t} = -\frac{i \hat{\mathcal{H}}}{\hbar} |\psi\rangle. $$
(A.5)

The structure of the wave function is expressed as

$$ |\psi \rangle = \sum\limits_{n=0}^{\infty} q_{n} \left[ A_{n+1} |1; n+1 \rangle + B_n |2 ; n \rangle \right]. $$
(A.6)

Then, implementing the SE into this wave function, and after that in the first time multiply the SE to 〈1|〈1 + n| to receive the first differential equation (DE) and in the second time multiply the SE to 〈2|〈n| to receive the second DE. The two DEs are

$$ \begin{array}{@{}rcl@{}} \dot{A}_{n+1}&=& -i \left[ \lambda e^{i {\Delta} t} B_n \sqrt{n+1} f(n+1)+ \chi n(n+1) A_{n+1} \right], \\ \dot{B}_n &=& -i \left[ \lambda e^{-i{\Delta} t} A_{n+1} \sqrt{n+1} f(n+1) + \chi n(n-1) B_n \right] \end{array} $$
(A.7)

Utilizing the rotation frame as An+ 1An+ 1eiΔt, the DEs become

$$ \begin{array}{@{}rcl@{}} \dot{A}_{n+1}&=& -i \left[ \lambda B_n \sqrt{n+1} f(n+1)+(\chi n(n+1)+{\Delta}) A_{n+1} \right], \\ \dot{B}_n &=& -i \left[ \lambda A_{n+1} \sqrt{n+1} f(n+1) + \chi n(n-1) B_n \right]. \end{array} $$
(A.8)

The solution to these two equations with considering the atom in the excited state [An+ 1(0) = 0,Bn(0) = 1] are written in (45).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.A. Mth Coherent State Induces Patterns in the Interaction of a Two-Level Atom in the Presence of Nonlinearities. Int J Theor Phys 60, 1574–1592 (2021). https://doi.org/10.1007/s10773-021-04780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04780-6

Keywords

Navigation