Skip to main content
Log in

Quantum Algorithms for the Resiliency of Vectorial Boolean Functions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Cui and Guo (Quantum Inform. Process. 18, 182, 2019) gave some quantum testing algorithms of multi-output Boolean functions, one of them was for resiliency testing. However, through the algorithm, we cannot get the probability distribution of a Boolean function. Improving the algorithm there, we present quantum algorithms for this problem. Under the condition of non-resiliency, we obtain not only the conclusion that the function F(x) is statistically dependent of which t variables but also the distance of the probability distribution from the uniform distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, J., Guo, J.: Quantum cryptographic property testing of multi-output Boolean functions. Quantum Inform. Process. 18, 182 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM Symposium on Theory of Computing, pp 212–219. ACM, Philadelphia (1996)

  3. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  4. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory IT-30(5), 776–780 (1984)

    Article  MathSciNet  Google Scholar 

  5. Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press, London (2010)

    Book  Google Scholar 

  6. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  7. Li, H.: A quantum algorithm for testing and learning resiliency of a Boolean function. Quantum Inform. Process. 18, 51 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cramér, H., Wold, H.: Some theorems on distribution functions. J. London Math. Soc. s1-11(4), 290–294 (1936)

    Article  MathSciNet  Google Scholar 

  9. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanalysis?. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp 432–450. Springer, Heidelberg (2004)

  10. Kurosawa, K., Johansson, T., Stinson, D.R.: Almost k-Wise independent sample spaces and their cryptologic applications. J. Cryptology 14, 231–253 (2001)

    Article  MathSciNet  Google Scholar 

  11. Brassard, G., Hoyer, P., Mosca, M., et al.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project of Henan Province (China) under Grant (Nos.162102210103, 182102210215), the Soft Science Project of Henan Province (China) under Grant (No.182400410482), the key disciplines construction project of Henan Finance University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

For the convenience of description, some notations are introduced first. Let \(\eta =(a_{i_{1}}, a_{i_{2}}, \cdots a_{i_{t}})\), I = It = i1it, \(\alpha =\alpha _{i_{1}}{\cdots } \alpha _{i_{t}}\), \(\text {Pr}[F(x)=y | x_{i_{1}}{\cdots } x_{i_{t}}=\alpha ]=P_{I,\alpha }^{y}\), \(\text {Pr}[F(x)=y | x_{i_{1}}\cdots x_{i_{t}}=\alpha ]-\frac {1}{2^{m}}=\varepsilon _{I,\alpha }^{y}\).

In order to make the proof more clearly, let’s look at some propositions.

Proposition 1

If \(b\in {F_{2}^{m}}\setminus \{0\}\), then

$$ S(a_{I},b) =\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}. $$
(21)

Proof

If b≠ 0, let \(x^{\prime }\in \{x_{1},\cdots , x_{n}\}-\{x_{i_{1}},\cdots , x_{i_{t}}\}\), then

$$ \begin{array}{@{}rcl@{}} S(a_{I},b)&=&\frac{1}{2^{n}}\sum\limits_{x\in {F^{n}_{2}}}(-1)^{a_{I}\cdot x+b\cdot F(x)}\\ &=&\frac{1}{2^{n}}\sum\limits_{x_{i_{1}}{\cdots} x_{i_{t}}}(-1)^ {a_{i_{1}}x_{i_{1}}+{\cdots} +a_{i_{t}}x_{i_{t}}} \sum\limits_{x^{\prime}}(-1)^{b\cdot F(x)}\\ &=&\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot (\text{Pr}\left[b\cdot F(x)=0 | x_{i_{1}}{\cdots} x_{i_{t}}=\alpha\right]\\ &&-\text{Pr}\left[b\cdot F(x)=1 | x_{i_{1}}{\cdots} x_{i_{t}}=\alpha\right])\\ &=&\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \left( \sum\limits_{y\in \{b\cdot y=0\}}P_{I,\alpha}^{y}- \sum\limits_{y\in \{b\cdot y=1\}}P_{I,\alpha}^{y}\right)\\ &=&\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \left( \sum\limits_{y\in \{b\cdot y=0\}}\varepsilon_{I,\alpha}^{y}- \sum\limits_{y\in \{b\cdot y=1\}}\varepsilon_{I,\alpha}^{y}\right)\\ &=&\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}.\\ \end{array} $$

Similarly, we have

Proposition 2

If b = 0, and aI≠ 0, then

$$ S(a_{I},b) =\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}. $$
(22)

Proposition 3

If b = 0, and aI = 0, then

$$ S(a_{I},b) =\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha}\cdot \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}+1. $$
(23)

On the other hand, by the definition of Walsh transform, we have

$$ S(a_{I},0) =\frac{1}{2^{t}}\sum\limits_{x_{i_{1}}{\cdots} x_{i_{t}}}(-1)^ {a_{i_{1}}x_{i_{1}}+{\cdots} +a_{i_{t}}x_{i_{t}}}. $$
(24)

Accordingly, S(0, 0) = 1, S(aI, 0) = 0 for aI≠ 0.

1.1 Proof of Lemma 1

Proof

Considering that for any fixed α, β, y, v, we have \({\sum }_{b\in {F_{2}^{m}}}(-1)^{b\cdot (y+v)} \varepsilon _{I,\alpha }^{y}\varepsilon _{I,\beta }^{v}=0\) unless y = v; \({\sum }_{\eta \in {F_{2}^{t}}}(-1)^{\eta \cdot (\alpha +\beta )} \varepsilon _{I,\alpha }^{y}\varepsilon _{I,\beta }^{y}=0\) unless α = β, then

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{b\in {F_{2}^{m}}\setminus\{0\}}\sum\limits_{{a}\in W_{I}}[S(a,b)]^{2}\\ &=&\sum\limits_{b\in {F_{2}^{m}}}\sum\limits_{{a}\in W_{I}} \left[\frac{1}{2^{t}}\sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha} \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}\right]^{2}\\ &=&2^{-2t}\sum\limits_{b\in {F_{2}^{m}}}\sum\limits_{\eta\in {F_{2}^{t}}} \left[\left( \sum\limits_{\alpha\in {F_{2}^{t}}}(-1)^{\eta\cdot\alpha} \sum\limits_{y\in {F_{2}^{m}}}(-1)^{b\cdot y}\varepsilon_{I,\alpha}^{y}\right) \left( \sum\limits_{\beta\in {F_{2}^{t}}}(-1)^{\eta\cdot\beta} \sum\limits_{v\in {F_{2}^{m}}}(-1)^{b\cdot v}\varepsilon_{I,\beta}^{v}\right)\right]\\ &=&2^{-2t}\sum\limits_{\alpha\in {F_{2}^{t}}}\sum\limits_{\beta\in {F_{2}^{t}}} \sum\limits_{\eta\in {F_{2}^{t}}}(-1)^{\eta\cdot(\alpha+\beta)} \sum\limits_{y\in {F_{2}^{m}}}\sum\limits_{v\in {F_{2}^{m}}}\left( \sum\limits_{b\in {F_{2}^{m}}}(-1)^{b\cdot (y+v)} \varepsilon_{I,\alpha}^{y}\varepsilon_{I,\beta}^{v}\right)\\ &=&2^{-2t}\sum\limits_{\alpha\in {F_{2}^{t}}}\sum\limits_{\beta\in {F_{2}^{t}}} \sum\limits_{\eta\in {F_{2}^{t}}}(-1)^{\eta\cdot(\alpha+\beta)} \sum\limits_{y\in {F_{2}^{m}}}2^{m}\varepsilon_{I,\alpha}^{y}\varepsilon_{I,\beta}^{y}\\ &=&2^{m-2t}\sum\limits_{y\in {F_{2}^{m}}}\sum\limits_{\alpha\in {F_{2}^{t}}}\sum\limits_{\beta\in {F_{2}^{t}}} \left( \sum\limits_{\eta\in {F_{2}^{t}}}(-1)^{\eta\cdot(\alpha+\beta)} \varepsilon_{I,\alpha}^{y}\varepsilon_{I,\beta}^{y}\right)\\ &=&2^{m-t}\sum\limits_{y\in {F_{2}^{m}}}\sum\limits_{\alpha\in {F_{2}^{t}}} (\varepsilon_{I,\alpha}^{y})^{2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Quantum Algorithms for the Resiliency of Vectorial Boolean Functions. Int J Theor Phys 60, 1565–1573 (2021). https://doi.org/10.1007/s10773-021-04779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04779-z

Keywords

Navigation