Skip to main content
Log in

Electronic Voting Scheme Based on a Quantum Ring Signature

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

For actual voting, the most important thing is voter privacy. Ring signatures widely used in electronic voting protocols to protect voter privacy due to unconditional confidentiality. It has been found that electronic signature protocols based on mathematical complexity are not secure. We propose an electronic voting protocol based on quantum ring signatures. The generalized GHZ state is prepared and distributed by a trusted third party (TTP), so that all users in the ring can effectively act as voters or verifiers. Users in the ring and TTP use quantum key distribution technology to share keys and encrypt messages. The entire protocol uses one-time secret technology to further enhance the security of the voting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C.H. Bennett, G. Brassard: Public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, pp. 175–179. IEEE, New York (1984)

  2. Zhang, Q., Yin, J., Chen, T.Y., Lu, S., Zhang, J., Li, X.Q., Yang, T., Wang, X.B., Pan, J.W.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace[J]. Phys. Rev. A. 73(2), 020301 (2006)

    Article  ADS  Google Scholar 

  3. Wang, Q., Zhou, X.Y., Guo, G.C.: Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources. Sci. Rep. 6, 35394 (2016)

    Article  ADS  Google Scholar 

  4. Farouk, A., Omara, F., Zakria, M., et al.: Secured IPsec multicast architecture based on quantum key distribution[C]. The International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing. 38–47 (2015)

  5. Chang, Y., Xu, C., Zhang, S., Yan, L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541–2546 (2014)

    Article  Google Scholar 

  6. Bebrov, G., Dimova, R.: Efficient quantum secure direct communication protocol based on Quantum Channel compression. Int. J. Theor. Phys. 59, 426–435 (2020)

    Article  MathSciNet  Google Scholar 

  7. Javelle, J., Mhalla, M., Perdrix, S.: New protocols and lower bounds for quantum secret sharing with graph states[C]. In: Conference on Quantum Computation, Communication, and Cryptography, pp. 1–12. Springer, Berlin, Heidelberg (2012)

  8. Ming-Kuai, Z.: Improvement of the semi-quantum secret sharing protocol of specific bits. Int. J. Theor. Phys. 59, 1772–1776 (2020)

    Article  Google Scholar 

  9. Yang, Y.G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol[J]. Quantum Inf. Process. 13(3), 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bin, L., Fei, G., Wei, H., et al.: QKD-based quantum private query without a failure probability[J]. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  Google Scholar 

  11. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states[J]. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution[J]. Phys. Rev. A. 79(3), 032341 (2009)

  13. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol[J]. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

  14. Gao, X., Chang, Y., Zhang, S.B., et al.: Quantum private query based on bell state and single photons[J]. Int. J. Theor. Phys. 57(7), 1983–1989 (2018)

  15. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment[J]. International Journal of Quantum Information. 16(05), 1850047 (2018)

  16. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue[J]. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gottesman D., Chuang I.: Quantum digital signatures[J]. arXiv. preprint quant-ph/0105032 (2001)

  18. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme[J]. Phys. Rev. A. 65(4), 042312 (2002)

  19. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states[J]. Phys. Rev. A. 79(5), 054307 (2009)

  20. Tian-Yin, W., Qiao-Yan, W.: Fair quantum blind signatures[J]. Chinese Physics B. 19(6), 060307 (2010)

  21. Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation[J]. Phys. Scr. 81(5), 055001 (2010)

  22. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret[C]. In: International conference on the theory and application of cryptology and information security, pp. 552–565. Springer, Berlin, Heidelberg (2001)

Download references

Acknowledgments

This work is supported by the Key Research and Development Project of Sichuan Province(No.2020YFG0307, No.20ZDYF2324, No.2019ZYD027, No.2018TJPT0012), the National Natural Science Foundation of China (No.61572086, No.61402058), the Innovation Team of Quantum Security Communication of Sichuan Province (No.17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643), the Application Foundation Project of Sichuan Province (No.2017JY0168), the Science and Technology Support Project of Sichuan Province (No.2018GZ0204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Qiu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Zhang, S., Chang, Y. et al. Electronic Voting Scheme Based on a Quantum Ring Signature. Int J Theor Phys 60, 1550–1555 (2021). https://doi.org/10.1007/s10773-021-04777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04777-1

Keywords

Navigation