Skip to main content
Log in

Comparative Study of Quantum Features of Radiation Generated by Nondegenerate Down-Conversion

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A comparative study of quantum properties associated with coherent correlations between the modes of light generated by a nondegenerate parametric down-conversion process is presented. Particularly, the degree of nonclassicality that can be quantified by logarithmic negativity and quantum discord is compared, and a striking similar tendency is observed. In the same manner, a comparison of the quadrature variance, the smallest eigenvalue of the symplectic matrix and Einstein-Podolsky-Rosen (EPR) steering is made whereby a significant similarity is witnessed. The highest degree of quantum features of the radiation is in general manifested near threshold, whereas the quantifying measure related to the smallest eigenvalue of the symplectic matrix is found to capture a better degree of quantumness. Since each criterion renders only sufficient condition, it is hoped that witnessing consistent outcome across different criteria enhances the chance for experimental verification and practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braunstein, S.L., van Loock, P.: Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  2. He, Q.Y., Gong, Q.H., Reid, M.D.: Phys. Rev. Lett. 114, 060402 (2015)

    Article  ADS  Google Scholar 

  3. Ou, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  4. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  5. Dechoum, K., Drummond, P.D., Chaturvedi, S., Reid, M.D.: Phys. Rev. A 70, 053807 (2004)

    Article  ADS  Google Scholar 

  6. Reid, M.D., Drummond, P.D.: Phys. Rev. A 40, 4493 (1989)

    Article  ADS  Google Scholar 

  7. Alam, M., Mandal, S., Wahiddin, M.R.: Optik 157, 1035 (2018)

    Article  ADS  Google Scholar 

  8. Drummond, P.D., Reid, M.D.: Phys. Rev. A 41, 3930 (1990)

    Article  ADS  Google Scholar 

  9. Drummond, P.D., Kinslert, P.: Quan. Semiclass. Opt. 7, 727 (1995)

    Article  ADS  Google Scholar 

  10. Tesfa, S.: J. Phys. B: At. Mol. Opt. Phys. 41, 145501 (2008)

    Article  ADS  Google Scholar 

  11. Sun, Z., Xu, X.Q., Liu, B.: Phys. Rev. A 97, 052309 (2018)

    Article  ADS  Google Scholar 

  12. Smith, D.H., et al.: Nature Commun. 3, 625 (2012)

    Article  ADS  Google Scholar 

  13. Wittmann, B., et al.: New J. Phys. 14, 053030 (2012)

    Article  ADS  Google Scholar 

  14. Bennet, A.J., et al.: Phys. Rev. X 2, 031003 (2012)

    Google Scholar 

  15. Steinlechner, S., et al.: Phys. Rev. A 87, 022104 (2013)

    Article  ADS  Google Scholar 

  16. Nguyen, H.C., Milne, A., Vu, T., Jevtic, S.: J. Phys. A: Math. Theor. 51, 355302 (2018)

    Article  Google Scholar 

  17. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: ibid 114, 060403 (2015)

    Article  Google Scholar 

  19. Li, C.M., et al.: Phys. Rev. A 92, 062310 (2015)

    Article  ADS  Google Scholar 

  20. Ji, S.W., Lee, J., Park, J., Nha, H.: Sci. Rep. 6, 29729 (2016)

    Article  ADS  Google Scholar 

  21. Mondal, D., Kaszlikowski, D.: Phys. Rev. A 98, 052330 (2018)

    Article  ADS  Google Scholar 

  22. Fujikawa, K.: Phys. Rev. A 79, 032334 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Buono, D., Nocerino, G., Porzio, A., Solimeno, S.: ibid 86, 042308 (2012)

    ADS  Google Scholar 

  24. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Phys. Rev. Lett. 122, 040403 (2019)

    Article  ADS  Google Scholar 

  25. Datta, A., Flammia, S.T., Caves, C.M.: Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  26. Datta, A., Vidal, G.: ibid 75, 042310 (2007)

    Google Scholar 

  27. Piani, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  28. Lanyon, B.P., Barbieri, M., White, A.G.: ibid 101, 200501 (2008)

    Article  Google Scholar 

  29. Cerf, N.J., Adami, C.: Phys. Rev. A 60, 893 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. Henderson, L., Vedral, V.: J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  Google Scholar 

  31. Lou, S.: Rev, Phys. A 77, 042303 (2008)

    Article  Google Scholar 

  32. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  33. Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  34. Fanchini, F.F., Castelano, L.K., Caldeira, A.O.: New J. Phys. 12, 073009 (2010)

    Article  ADS  Google Scholar 

  35. Adesso, G., Datta, A.: Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  36. Giorda, P., Paris, M.G.A.: Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  37. Sarandy, M.S.: Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  38. Chiuri, A., Vallone, G., Paternostro, M., Mataloni, P.: ibid 84, 020304 (2011)

    Google Scholar 

  39. Passante, G., Moussa, O., Trottier, D.A., Laflamme, R.: ibid 044302 (2011)

  40. Tesfa, S.: Optics Commun. 285, 830 (2012)

    Article  ADS  Google Scholar 

  41. Giedke, G., Cirac, J.I.: Phys. Rev. A 66, 032316 (2002)

    Article  ADS  Google Scholar 

  42. Bell, J.S.: Physics Physique Fizika 1, 195 (1965)

    Article  Google Scholar 

  43. Bennett, C.H., et al.: Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  45. Giedke, G., et al.: ibid 91, 107901 (2003)

    Article  Google Scholar 

  46. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  47. Serafini, A., Illuminati, F.: ibid 70, 022318 (2004)

    ADS  Google Scholar 

  48. Fiurasek, J., Cerf, N.J.: Phys. Rev. Lett. 93, 063601 (2004)

    Article  ADS  Google Scholar 

  49. Tesfa, S.: J. Phys. B: At. Mol. Opt. Phys. 42, 215506 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitotaw Eshete.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Correlations

Appendix A: Correlations

In the following, the time evolution of the cavity mode variables and their correlations are obtain in Heisenberg’s picture to be

$$ \frac{d}{dt}\langle\hat{a}\rangle=-\frac{\kappa}{2}\langle\hat{a}\rangle+\mu\langle\hat{b}^{\dagger}\rangle, $$
(A1)
$$ \frac{d}{dt}\langle\hat{b}\rangle=-\frac{\kappa}{2}\langle\hat{b}\rangle+\mu\langle\hat{a}^{\dagger}\rangle, $$
(A2)
$$ \frac{d}{dt}\langle\hat{a}^{2}\rangle=-\kappa\langle\hat{a}^{2}\rangle+2\mu\langle\hat{a}\hat{b}^{\dagger}\rangle, $$
(A3)
$$ \frac{d}{dt}\langle\hat{b}^{2}\rangle=-\kappa\langle\hat{b}^{2}\rangle+2\mu\langle\hat{b}\hat{a}^{\dagger}\rangle, $$
(A4)
$$ \frac{d}{dt}\langle\hat{a}^{\dagger}\hat{a}\rangle= -\kappa\langle\hat{a}^{\dagger}\hat{a}\rangle-2\mu\langle\hat{a}^{\dagger}\hat{b}^{\dagger}\rangle, $$
(A5)
$$ \frac{d}{dt}\langle\hat{b}^{\dagger}\hat{b}\rangle= -\kappa\langle\hat{b}^{\dagger}\hat{b}\rangle-2\mu\langle\hat{b}^{\dagger}\hat{a}^{\dagger}\rangle, $$
(A6)
$$ \frac{d}{dt}\langle\hat{a}\hat{b}\rangle=-\kappa\langle\hat{a}\hat{b}\rangle-\mu\left( \langle\hat{a}^{\dagger}\hat{a}\rangle+\langle\hat{b}^{\dagger}\hat{b}\rangle\right)-\mu, $$
(A7)
$$ \frac{d}{dt}\langle\hat{a}\hat{b}^{\dagger}\rangle= -\kappa\langle\hat{a}\hat{b}^{\dagger}\rangle+\mu\left( \langle\hat{a}^{2}\rangle+\langle\hat{b}^{\dagger2}\rangle\right). $$
(A8)

On the other hand, with the aid of (A5), (A6) and (A7), one readily finds at steady state

$$ \begin{array}{@{}rcl@{}} \mu \langle\hat{a}^{\dagger}\hat{a}\rangle+\mu \langle\hat{b}^{\dagger}\hat{b}\rangle+k\langle\hat{a}\hat{b}\rangle&=&-\mu,\\ \kappa \langle\hat{a}^{\dagger}\hat{a}\rangle+2\mu \langle\hat{a}\hat{b}\rangle&=&0,\\ \kappa \langle\hat{b}^{\dagger}\hat{b}\rangle+2\mu \langle\hat{a}\hat{b}\rangle&=&0. \end{array} $$
(A9)

Simultaneously solving these equations thus leads to

$$ \langle\hat{a}^{\dagger}\hat{a}\rangle=\langle\hat{b}^{\dagger}\hat{b}\rangle=\frac{2\mu^{2}}{\kappa^{2}-4\mu^{2}}, $$
(A10)
$$ \langle\hat{a}\hat{b}\rangle=-\frac{\kappa\mu}{\kappa^{2}-4\mu^{2}}. $$
(A11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshete, S., Tesfa, S. Comparative Study of Quantum Features of Radiation Generated by Nondegenerate Down-Conversion. Int J Theor Phys 60, 1063–1076 (2021). https://doi.org/10.1007/s10773-021-04727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04727-x

Keywords

Navigation