Skip to main content
Log in

The Analysis of bs+ in the Family Non-Universal \(Z^{\prime }\) Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Motivated by recent experimental results on \( R_{K^{(*)}}\) and \(\mathcal {P}^{\prime }_{5}\) in BK(∗)+ and the latest improved measurement result in ΛbΛ+ processes. We will investigate the rare decay on the flavor-changing neutral current process of Λb baryon and B meson in the family non-universal \(Z^{\prime }\) model, which is one of the well motivated extensions of the Standard Model. We have obtained the upper limits on the NP coupling parameters from the recent experimental measurements of the decay processes Bs+ BK(∗)+, BXs+ and ΛbΛ+. Then we analyze the branching ratio, the normalized forward-backward asymmetries and a series of angular observables in the Standard Model and family non-universal \(Z^{\prime }\) model. We find that the constrained NP coupling parameters have few obvious effects on the process bsμ+μ, nevertheless, NP coupling parameters have very large effects on the process bsτ+τ. In the future we expect the precision measurements of these observables will be researched by LHCb and Belle-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/InclusiveVcb/inclXclnuKin.html

References

  1. Bordone, M., Isidori, G., Pattori, A.: Eur. Phys. J. C 76(8), 440 (2016). arXiv:1605.07633 [hep-ph]

    Article  ADS  Google Scholar 

  2. Hiller, G., Kruger, F.: Phys. Rev. D 69, 074020 (2004). arXiv:0310219 [hep-ph]

    Article  ADS  Google Scholar 

  3. Aaij, R., et al.: LHCb Collaboration. Phys. Rev. Lett. 122(19), 191801 (2019). arXiv:1903.09252 [hep-ex]

    Article  ADS  Google Scholar 

  4. Aaij, R., et al.: LHCb Collaboration. JHEP 1708, 055 (2017). arXiv:1705.05802 [hep-ex]

    Article  ADS  Google Scholar 

  5. Capdevila, B., Descotes-Genon, S., Matias, J., Virto, J.: JHEP 1610, 075 (2016). arXiv:1605.03156 [hep-ph]

    Article  ADS  Google Scholar 

  6. Serra, N., Silva Coutinho, R., van Dyk, D.: Phys. Rev. D 95(3), 035029 (2017). arXiv:1610.08761 [hep-ph]

    Article  ADS  Google Scholar 

  7. Descotes-Genon, S., Matias, J., Ramon, M., Virto, J.: JHEP 1301, 048 (2013). arXiv:1207.2753 [hep-ph]

    Article  ADS  Google Scholar 

  8. Descotes-Genon, S., Hurth, T., Matias, J., Virto, J.: JHEP 1305, 137 (2013). arXiv:1303.5794 [hep-ph]

    Article  ADS  Google Scholar 

  9. Aaij, R., et al.: LHCb Collaboration. Phys. Rev. Lett. 111, 191801 (2013). arXiv:1308.1707 [hep-ex]

    Article  ADS  Google Scholar 

  10. Aaij, R., et al.: LHCb Collaboration. JHEP 1602, 104 (2016). arXiv:1512.04442 [hep-ex]

    Article  ADS  Google Scholar 

  11. Wehle, S., et al.: Belle Collaboration. Phys. Rev. Lett. 118(11), 111801 (2017). arXiv:1612.05014 [hep-ex]

    Article  ADS  Google Scholar 

  12. Aaboud, M., et al: ATLAS Collaboration. JHEP 1810, 047 (2018). arXiv:1805.04000 [hep-ex]

    ADS  Google Scholar 

  13. Khachatryan, V., et al.: CMS Collaboration. Phys. Lett. B 753, 424 (2016). arXiv:1507.08126 [hep-ex]

    Article  ADS  Google Scholar 

  14. Alguer’o, M., Capdevila, B., Crivellin, A., Descotes-Genon, S., Masjuan, P., Matias, J., Novoa, M., Virto, J.: Eur. Phys. J. C 79(8), 714 (2019). arXiv:1903.09578 [hep-ph]

    Article  ADS  Google Scholar 

  15. Aaij, R., et al.: LHCb Collaboration. JHEP 1509, 179 (2015). https://doi.org/10.1007/JHEP09(2015)179. arXiv:1506.08777 [hep-ex]

    Article  ADS  Google Scholar 

  16. Aaltonen, T., et al.: CDF Collaboration. Phys. Rev. Lett. 107, 201802 (2011). arXiv:1107.3753 [hep-ex]

    Article  ADS  Google Scholar 

  17. R. Aaij, et al.: LHCb Collaboration. JHEP 1809, 146 (2018). arXiv:1808.00264 [hep-ex]

    ADS  Google Scholar 

  18. Glashow, S.L., Iliopoulos, J., Maiani, L.: Phys. Rev. D 2, 1285 (1970)

    Article  ADS  Google Scholar 

  19. Hurth, T., Nakao, M.: Ann. Rev. Nucl. Part. Sci. 60, 645 (2010). arXiv:1005.1224 [hep-ph]

    Article  ADS  Google Scholar 

  20. Blake, T., Lanfranchi, G., Straub, D.M.: Prog. Part. Nucl. Phys. 92, 50 (2017). arXiv:1606.00916 [hep-ph]

    Article  ADS  Google Scholar 

  21. Bobeth, C., Buras, A.J., Kruger, F., Urban, J.: Nucl. Phys. B 630, 87 (2002). arXiv:0112305 [hep-ph]

    Article  ADS  Google Scholar 

  22. Buchalla, G., Buras, A.J., Lautenbacher, M.E.: Rev. Mod. Phys. 68, 1125 (1996). arXiv:9512380 [hep-ph]

    Article  ADS  Google Scholar 

  23. Chetyrkin, K.G., Misiak, M., Munz, M.: Phys. Lett. B 400, 206 (1997). arXiv:9612313 [hep-ph]

    Article  ADS  Google Scholar 

  24. Ali, A.: B decays, flavor mixings and CP violation in the standard model. arXiv:9606324 [hep-ph]

  25. Katirci, N., Azizi, K.: J. Phys. G 40, 085005 (2013). arXiv:1207.4053 [hep-ph]

    Article  ADS  Google Scholar 

  26. Buras, A.J., Misiak, M., Munz, M., Pokorski, S.: Nucl. Phys. B 424, 374 (1994). arXiv:9311345 [hep-ph]

    Article  ADS  Google Scholar 

  27. Misiak, M.: Nucl. Phys. B 393, 23 (1993)

    Article  ADS  Google Scholar 

  28. Buras, A.J., Munz, M.: Phys. Rev. D 52, 186 (1995). arXiv:9501281 [hep-ph]

    Article  ADS  Google Scholar 

  29. Beneke, M., Buchalla, G., Neubert, M., Sachrajda, C.T.: Eur. Phys. J. C 61, 439 (2009). arXiv:0902.4446 [hep-ph]

    Article  ADS  Google Scholar 

  30. Aliev, T.M., Savci, M.: Nucl. Phys. B 863, 398 (2012). arXiv:1202.0398 [hep-ph]

    Article  ADS  Google Scholar 

  31. Azizi, K., Olgun, A.T., Tavukolu, Z.: Phys. Rev. D 92(11), 115025 (2015). arXiv:1508.03980 [hep-ph]

    Article  ADS  Google Scholar 

  32. Langacker, P., Plumacher, M.: Phys. Rev. D 62, 013006 (2000). arXiv:0001204 [hep-ph]

    Article  ADS  Google Scholar 

  33. Chang, Q., Li, X.Q., Yang, Y.D.: JHEP 1004, 052 (2010). arXiv:1002.2758 [hep-ph]

    Article  ADS  Google Scholar 

  34. Li, Y., Hua, J., Yang, K.C.: Eur. Phys. J. C 71, 1775 (2011). arXiv:1107.0630 [hep-ph]

    Article  ADS  Google Scholar 

  35. Aliev, T.M., Savci, M.: Phys. Lett. B 718, 566 (2012). arXiv:1202.5444 [hep-ph]

    Article  ADS  Google Scholar 

  36. Chang, Q., Li, X.Q., Yang, Y.D.: JHEP 1002, 082 (2010). arXiv:0907.4408 [hep-ph]

    Article  ADS  Google Scholar 

  37. Das, D.: Eur. Phys. J. C 78(3), 230 (2018). arXiv:1802.09404 [hep-ph]

    Article  ADS  Google Scholar 

  38. Das, D.: JHEP 1807, 063 (2018). arXiv:1804.08527 [hep-ph]

    Article  ADS  Google Scholar 

  39. B, P., Feldmann, T., van Dyk, D.: JHEP 1501, 155 (2015). arXiv:1410.2115 [hep-ph]

    ADS  Google Scholar 

  40. Gutsche, T., Ivanov, M.A., Korner, J.G.: Phys. Rev. D 87, 074031 (2013). arXiv:1301.3737 [hep-ph]

    Article  ADS  Google Scholar 

  41. Kumar, G., Mahajan, N.: arXiv:1511.00935 [hep-ph]

  42. Blake, T., Kreps, M.: JHEP 1711, 138 (2017). arXiv:1710.00746 [hep-ph]

    Article  ADS  Google Scholar 

  43. Hu, Q.Y., Li, X.Q., Yang, Y.D.: Eur. Phys. J. C 77(4), 228 (2017). arXiv:1701.04029 [hep-ph]

    Article  ADS  Google Scholar 

  44. Aaij, R., et al.: LHCb Collaboration. JHEP 1506, 115 (2015). arXiv:1503.07138 [hep-ex]

    ADS  Google Scholar 

  45. Tanabashi, M., et al.: (Particle Data Group). Phys. Rev. D 98, 010001 (2018)

    Google Scholar 

  46. Ali, A., Ball, P., Handoko, L.T., Hiller, G.: Phys. Rev. D 61, 074024 (2000). arXiv:9910221 [hep-ph]

    Article  ADS  Google Scholar 

  47. Altmannshofer, W., Ball, P., Bharucha, A., Buras, A.J., Straub, D.M., Wick, M.: JHEP 0901, 019 (2009). arXiv:0811.1214 [hep-ph]

    Article  ADS  Google Scholar 

  48. Bobeth, C., Hiller, G., Piranishvili, G.: JHEP 0807, 106 (2008). arXiv:0805.2525 [hep-ph]

    Article  ADS  Google Scholar 

  49. Matias, J., Mescia, F., Ramon, M., Virto, J.: JHEP 1204, 104 (2012). arXiv:1202.4266 [hep-ph]

    Article  ADS  Google Scholar 

  50. Kruger, F., Matias, J.: Phys. Rev. D 71, 094009 (2005). arXiv:0502060 [hep-ph]

    Article  ADS  Google Scholar 

  51. Sahoo, S., Mohanta, R.: Phys. Rev. D 93(3), 034018 (2016). arXiv:1507.02070 [hep-ph]

    Article  ADS  Google Scholar 

  52. Bobeth, C., Hiller, G., van Dyk, D.: JHEP 1007, 098 (2010). arXiv:1006.5013 [hep-ph]

    Article  ADS  Google Scholar 

  53. Bobeth, C., Hiller, G., van Dyk, D.: Phys. Rev. D 87(3), 034016 (2013). arXiv:1212.2321 [hep-ph]

    Article  ADS  Google Scholar 

  54. Egede, U., Hurth, T., Matias, J., Ramon, M., Reece, W.: JHEP 0811, 032 (2008). arXiv:0807.2589 [hep-ph]

    Article  ADS  Google Scholar 

  55. Bazavov, A., et al.: Phys. Rev. D 98(7), 074512 (2018). arXiv:1712.09262 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  56. Ball, P., Zwicky, R.: Phys. Rev. D 71, 014029 (2005). arXiv:0412079 [hep-ph]

    Article  ADS  Google Scholar 

  57. Wu, Y.L., Zhong, M., Zuo, Y.B.: Int. J. Mod. Phys. A 21, 6125 (2006). arXiv:0604007 [hep-ph]

    Article  ADS  Google Scholar 

  58. Ball, P., Zwicky, R.: Phys. Rev. D 71, 014015 (2005). arXiv:0406232 [hep-ph]

    Article  ADS  Google Scholar 

  59. Detmold, W., Meinel, S.: Phys. Rev. D 93(7), 074501 (2016). arXiv:1602.01399 [hep-lat]

    Article  ADS  Google Scholar 

  60. Li, X.Q., Li, Y.M., Lu, G.R., Su, F.: JHEP 1205, 049 (2012). arXiv:1204.5250 [hep-ph]

    Article  ADS  Google Scholar 

  61. Chang, Q., Li, X.Q., Yang, Y.D.: J. Phys. G 41, 105002 (2014). arXiv:1312.1302 [hep-ph]

    Article  ADS  Google Scholar 

  62. Beneke, M., Feldmann, T., Seidel, D.: Nucl. Phys. B 612, 25 (2001). arXiv:0106067 [hep-ph]

    Article  ADS  Google Scholar 

  63. Burdman, G.: Phys. Rev. D 57, 4254 (1998). arXiv:9710550 [hep-ph]

    Article  ADS  Google Scholar 

  64. Banerjee, D., Sahoo, S.: Chin. Phys. C 41(8), 083101 (2017). arXiv:1705.10458 [hep-ph]

    Article  ADS  Google Scholar 

  65. Paracha, M.A., Ahmed, I., Aslam, M.J.: PTEP 2015(3), 033B04 (2015). arXiv:1408.4318 [hep-ph]

    Google Scholar 

  66. Feldmann, T., Yip, M.W.Y.: Phys. Rev. D 85, 014035 (2012). arXiv:1111.1844 [hep-ph]

    Article  ADS  Google Scholar 

  67. Wang, Y.M., Shen, Y.L.: JHEP 1602, 179 (2016). arXiv:1511.09036 [hep-ph]

    Article  ADS  Google Scholar 

  68. Nir, Y.: Phys. Lett. B 221, 184 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Huan Sheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Helicity-Based Form-Factor Parametrization for Λ bΛ +

In the following, we will provide some useful definitions for ΛbΛ from factors which aim to improve precious definitions [66]. For the vector currents, we have

$$ \begin{array}{@{}rcl@{}} \langle {\varLambda}\left( k,s_{k}\right)|\bar{s}\gamma^{\mu} b |{\varLambda}_{b}\left( p,s_{p}\right)\rangle &=& \bar{u}(k,s_{k})\left[f_{0}\left( q^{2}\right)\left( m_{{\varLambda}_{b}}-m_{{\varLambda}}\right)\frac{q^{\mu}}{q^{2}}\right.\\ && + f_{+}\left( q^{2}\right) \frac{m_{{\varLambda}_{b}}+m_{{\varLambda}}}{s_{+}} \left\{p^{\mu} + k^{\mu} - \frac{q^{\mu}}{q^{2}}\left( m_{{\varLambda}_{b}}-m_{{\varLambda}}\right) \right\}\\ &&\left.+ f_{\perp}\left( q^{2}\right) \left\{ \gamma^{\mu} - \frac{2m_{{\varLambda}}}{s_{+}}p^{\mu} - \frac{2m_{{\varLambda}_{b}}}{s_{+}}k^{\mu} \right\} \right]u(p,s_{p}) , \end{array} $$
(29)

where the variables s± are defined as \(s_{\pm }=(m_{{\varLambda }_{b}} \pm m_{{\varLambda }})^{2}-q^{2}\)

For the axial-vector currents we get

$$ \begin{array}{@{}rcl@{}} \langle {\varLambda}(k,s_{k})|\bar{s}\gamma^{\mu}\gamma_{5} b |{\varLambda}_{b}\left( p,s_{p}\right)\rangle &=& - \bar{u}(k,s_{k}) \gamma_{5} \left[ g_{0}\left( q^{2}\right) \left( m_{{\varLambda}_{b}}+m_{{\varLambda}}\right) \frac{q^{\mu}}{q^{2}} \right.\\ && + g_{+}\left( q^{2}\right) \frac{m_{{\varLambda}_{b}}-m_{{\varLambda}}}{s_{-}} \left\{p^{\mu} + k^{\mu} - \frac{q^{\mu}}{q^{2}} \left( m_{{\varLambda}_{b}}^{2}-m_{{\varLambda}}\right)^{2} \right\} \\ &&\left. + g_{\perp}\left( q^{2}\right) \left\{\gamma^{\mu} + \frac{2m_{{\varLambda}}}{s_{-}}p^{\mu} - \frac{2m_{{\varLambda}_{b}}}{s_{-}}k^{\mu} \right\} \right] u\left( p,s_{p}\right) . \end{array} $$
(30)

From (29) and (30), the matrix elements for the scalar and the pseudo-scalar currents can be written

$$ \begin{array}{@{}rcl@{}} \langle {\varLambda}(k,s_{k})|\bar{s} b |{\varLambda}_{b}(p,s_{p})\rangle =& f_{0}\left( q^{2}\right) \frac{m_{{\varLambda}_{b}}-m_{{\varLambda}}}{m_{b}-m_{s}} \bar{u}(k,s_{k})u\left( p,s_{p}\right) , \end{array} $$
(31)
$$ \begin{array}{@{}rcl@{}} \langle {\varLambda}(k,s_{k})|\bar{s} \gamma_{5} b |{\varLambda}_{b}(p,s_{p})\rangle =& g_{0}\left( q^{2}\right) \frac{m_{{\varLambda}_{b}}+m_{{\varLambda}}}{m_{b}+m_{s}} \bar{u}(k,s_{k}) \gamma_{5} u\left( p,s_{p}\right) , \end{array} $$
(32)

where we do not neglect the mass of strange quark in the denominator. For the dipole operators we have

$$ \begin{array}{@{}rcl@{}} \langle {\varLambda} |\bar{s}i q_{\nu}\sigma^{\mu\nu}b|{\varLambda}_{b}\rangle &=& -\bar{u}(k,s_{k})\left[ h_{+}\left( q^{2}\right) \frac{q^{2}}{s_{+}}\left( p^{\mu} + k^{\mu} - \frac{q^{\mu}}{q^{2}}\left( {m}_{{\varLambda}_{b}}^{2} - {m}_{{\varLambda}}^{2}\right) \right) \right.\\ &&\left.+ h_{\perp} (m_{{\varLambda}_{b}} + m_{{\varLambda}}) \left( \gamma^{\mu} - \frac{2m_{{\varLambda}}}{s_{+}}p^{\mu} - \frac{2m_{{\varLambda}_{b}}}{s_{+}}k^{\mu} \right) \right]u\left( p,s_{p}\right), \end{array} $$
(33)

and

$$ \begin{array}{@{}rcl@{}} \langle {\varLambda} |\bar{s}i q_{\nu}\sigma^{\mu\nu}\gamma_{5} b|{\varLambda}_{b}\rangle &=& -\bar{u}(k,s_{k})\gamma_{5} \left[\tilde h_{+} \frac{q^{2}}{s_{-}} \left( p^{\mu} + k^{\mu} - \frac{q^{\mu}}{q^{2}}\left( m^{2}_{{\varLambda}_{b}}-m^{2}_{{\varLambda}}\right) \right)\right. \\ &&\left.+ \tilde h_{\perp} \left( m_{{\varLambda}_{b}} - m_{{\varLambda}}\right)\!\left( \!\gamma^{\mu} + \frac{2m_{{\varLambda}}}{s_{-}}p^{\mu} - \frac{2m_{{\varLambda}_{b}}}{s_{-}}k^{\mu} \!\right)\!\right] u\left( p,s_{p}\right) \end{array} $$
(34)

Significantly, our notations of these form factors are same with Refs. [59, 67] and we slightly changed notation compared to Refs. [37, 39].

Appendix B: Transverse Amplitudes for Λ bΛ +

The definitions and the spinor matrix elements are worked out in Appendixes in Refs. [37, 38]. For the VA operators the non-vanishing hadronic helicity amplitudes are gotten

$$ \begin{array}{@{}rcl@{}} {H}_{\text{VA,0}}^{L(R),+\frac{1}{2},+\frac{1}{2}}&=&{f}_{0}^{V}(m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{\frac{s_{-}}{q^{2}}} \mathcal{C}_{\text{VA}}^{L(R)} {-} {f}_{0}^{A}(m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{\frac{s_{+}}{q^{2}}} \mathcal{C}_{\text{VA}}^{L(R)} \\ &+& \frac{2m_{b}}{q^{2}} \left( {f}_{0}^{T} \sqrt{q^{2} s_{-}} {-} {f}_{0}^{T5} \sqrt{q^{2} s_{+}} \right) \mathcal{C}_{7}^{\text{eff}}, \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} {H}_{\text{VA,0}}^{L(R),-\frac{1}{2},-\frac{1}{2}}&=&{f}_{0}^{V}(m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{\frac{s_{-}}{q^{2}}} \mathcal{C}_{\text{VA}}^{L(R)} {+} {f}_{0}^{A}(m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{\frac{s_{+}}{q^{2}}} \mathcal{C}_{\text{VA}}^{L(R)} \\ &+& \frac{2m_{b}}{q^{2}} \left( {f}_{0}^{T} \sqrt{q^{2} s_{-}} {+} {f}_{0}^{T5} \sqrt{q^{2} s_{+}} \right) \mathcal{C}_{7}^{\text{eff}}, \end{array} $$
(36)
$$ \begin{array}{@{}rcl@{}} {H}_{\text{VA,+}}^{L(R),-\frac{1}{2},+\frac{1}{2}} &=&{-f}_{\perp}^{V} \sqrt{2s_{-}} \mathcal{C}_{\text{VA}}^{L(R)} {+} {f}_{\perp}^{A} \sqrt{2s_{+}} \mathcal{C}_{\text{VA}}^{L(R)}\\ &-&\frac{2m_{b}}{q^{2}} \left( {f}_{\perp}^{T}(m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{2s_{-}} {-} {f}_{\perp}^{T5} (m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{2s_{+}} \right)\mathcal{C}_{7}^{\text{eff}}, \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} {H}_{\text{VA,-}}^{L(R),+\frac{1}{2},-\frac{1}{2}} &=& -{f}_{\perp}^{V} \sqrt{2s_{-}} \mathcal{C}^{L(R)}_{\text{VA}} {-} f^{A}_{\perp} \sqrt{2s_{+}} \mathcal{C}^{L(R)}_{\text{VA}} \\ &-&\frac{2m_{b}}{q^{2}} \left( f^{T}_{\perp}(m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{2s_{-}} {+} f^{T5}_{\perp} (m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{2s_{+}} \right)\mathcal{C}_{7}^{\text{eff}}, \end{array} $$
(38)
$$ \begin{array}{@{}rcl@{}} {H}_{t}^{+\frac{1}{2},-\frac{1}{2}}&=&~~ 2\left( {f_{t}^{A}} (m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{\frac{s_{-}}{q^{2}}} {-} {f_{t}^{V}} (m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{\frac{s_{+}}{q^{2}}} \right) \mathcal{C}_{10}^{\text{tot}}, \end{array} $$
(39)
$$ \begin{array}{@{}rcl@{}} {H}_{t}^{+\frac{1}{2},-\frac{1}{2}}&=&{-} 2\left( {f_{t}^{A}} (m_{{\varLambda}_{b}} + m_{{\varLambda}}) \sqrt{\frac{s_{-}}{q^{2}}} {+} {f_{t}^{V}} (m_{{\varLambda}_{b}} - m_{{\varLambda}}) \sqrt{\frac{s_{+}}{q^{2}}} \right) \mathcal{C}_{10}^{\text{tot}}, \end{array} $$
(40)

where \(\mathcal {C}_{\text {VA}}^{L(R)}=\mathcal {C}_{9}^{\text {tot}} \mp \mathcal {C}_{10}^{\text {tot}}\). It is clearly to find that our result about \(\mathcal {C}_{\text {VA}}^{L(R)}\) is same with the \(\mathcal {C}_{\text {VA,+(-)}}^{L(R)}\) listed in the (4.17—4.18) of Ref. [37] when \(\mathcal {C}_{\mathrm {V}}^{(^{\prime })}=\mathcal {C}_{\mathrm {A}}^{(^{\prime })}=0\).

Using the representations of the lepton spinors which are given in Appendix of Ref. [37]. The author derived the expression of \(L^{\lambda _{1},\lambda _{2}}_{L(R)}\) and \( L^{\lambda _{1},\lambda _{2}}_{L(R),\lambda }\) which are shown in Eq. (4.25) of Ref. [37] for the limit m = 0. Similar to the steps in Ref. [37], when m≠ 0, we obtain the non-zero results of the leptonic helicity amplitudes for different λ1 and λ2.

$$ \begin{array}{@{}rcl@{}} {L}_{L,+1}^{+\frac{1}{2},+\frac{1}{2}}&=& L_{R,+1}^{+\frac{1}{2},+\frac{1}{2}}= {L}_{L,-1}^{-\frac{1}{2},-\frac{1}{2}}=L_{R,-1}^{-\frac{1}{2},-\frac{1}{2}}=\sqrt{2}m_{\ell}\sin{\theta_{\ell}}, \end{array} $$
(41)
$$ \begin{array}{@{}rcl@{}} L_{L,+1}^{-\frac{1}{2},-\frac{1}{2}}&=& {L}_{R,+1}^{-\frac{1}{2},-\frac{1}{2}}= L_{L,-1}^{+\frac{1}{2},+\frac{1}{2}}= {L}_{R,-1}^{+\frac{1}{2},+\frac{1}{2}}=-\sqrt{2}m_{\ell}\sin{\theta_{\ell}}, \end{array} $$
(42)
$$ \begin{array}{@{}rcl@{}} {L}_{L,+1}^{+\frac{1}{2},-\frac{1}{2}}&=&{-L}_{R,-1}^{-\frac{1}{2},+\frac{1}{2}}=-\sqrt{\frac{q^{2}}{2}}(1-{\beta}_{\ell})(1-\cos{\theta_{\ell}}), \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} {L}_{L,+1}^{-\frac{1}{2},+\frac{1}{2}}&=&{-L}_{R,-1}^{+\frac{1}{2},-\frac{1}{2}}=\sqrt{\frac{q^{2}}{2}}(1+{\beta}_{\ell})(1+\cos{\theta_{\ell}}), \end{array} $$
(44)
$$ \begin{array}{@{}rcl@{}} {L}_{R,+1}^{+\frac{1}{2},-\frac{1}{2}}&=&{-L}_{L,-1}^{-\frac{1}{2},+\frac{1}{2}}=-\sqrt{\frac{q^{2}}{2}}(1+{\beta}_{\ell})(1-\cos{\theta_{\ell}}), \end{array} $$
(45)
$$ \begin{array}{@{}rcl@{}} {L}_{R,+1}^{-\frac{1}{2},+\frac{1}{2}}&=&{-L}_{L,-1}^{+\frac{1}{2},-\frac{1}{2}}=\sqrt{\frac{q^{2}}{2}}(1-{\beta}_{\ell})(1+\cos{\theta_{\ell}}), \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} -L_{L,0}^{+\frac{1}{2},+\frac{1}{2}}&=&{L}_{L,0}^{-\frac{1}{2},-\frac{1}{2}}=-L_{R,0}^{+\frac{1}{2},+\frac{1}{2}}=L_{R,0}^{-\frac{1}{2},-\frac{1}{2}}=2m_{\ell}\cos{\theta_{\ell}}, \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} L_{L,0}^{+\frac{1}{2},-\frac{1}{2}}&=&{L}_{R,0}^{-\frac{1}{2},+\frac{1}{2}}=\sqrt{q^{2}}(1-{\beta}_{\ell})\sin{\theta_{\ell}}, ~{L}_{L,0}^{-\frac{1}{2},+\frac{1}{2}}={L}_{R,0}^{+\frac{1}{2},-\frac{1}{2}}=\sqrt{q^{2}}(1+{\beta}_{\ell})\sin{\theta_{\ell}}, \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} {L}_{L,t}^{+\frac{1}{2},+\frac{1}{2}}&=&{L}_{L,t}^{-\frac{1}{2},-\frac{1}{2}}=-L_{R,t}^{+\frac{1}{2},+\frac{1}{2}}=-L_{R,t}^{-\frac{1}{2},-\frac{1}{2}}=2m_{\ell}. \end{array} $$
(49)

The leptonic helicity amplitudes which are not shown are zero for other combinations of λ1 and λ2.

Appendix C: Constraints on \(Z^{\prime }\) Couplings for B s + and BX s +

The full expression for the branching ratio of \({B_{s}^{0}}\to \ell ^{+}\ell ^{-}\), due to the non-universal Z’ couplings, can be written [36]

$$ \begin{array}{@{}rcl@{}} \mathcal{B}({{B}_{s}^{0}}\to\ell^{+}\ell^{-}) &=&\tau_{B_{s}}\frac{{{G}_{F}^{2}}}{4\pi}{f}_{{B}_{s}}^{2}m_{\ell}^{2} m_{B_{s}}\sqrt{1-\frac{4m_{\ell}^{2}}{m_{B_{s}}^{2}}}|V_{tb}V_{ts^{*}}|^{2} \\ &&\times \left|\frac{\alpha}{2\pi \sin^{2}\theta_{W}}Y(x_{t})-2\frac{{B}_{sb}^{L} (B_{\ell\ell}^{L}-{B}_{\ell\ell}^{R})}{V_{tb}V_{ts^{*}}}\right|^{2}. \end{array} $$
(50)

For the process bs+, introducing the normalized dilepton invariant mass \(\hat s=(p_{l^{+}}+p_{l^{-}})^{2}/{{m}_{b}^{2}}\), the differential decay rate is shown

$$ \begin{array}{@{}rcl@{}} R(\hat s) \equiv \frac{\frac{d}{d\hat s}\mathcal{B}(b\to s \ell^{+}\ell^{-})}{\mathcal{B}(b\to c \ell^{-}\bar{\nu})} =\frac{\alpha^{2}}{4\pi}\frac{|V_{ts}^{*}{V}_{tb}|^{2}}{|V_{cb}|^{2}}\frac{(1-\hat s)^{2}}{f((\chi))\kappa(\chi)}\sqrt{1-\frac{4t^{2}}{\hat{s}}}D(\hat s), \end{array} $$
(51)

with

$$ \begin{array}{@{}rcl@{}} D(\hat{s})&=&(1+2\hat{s})\left( 1+\frac{2t^2}{\hat{s}}\right)\left|{C}_9^{\text{tot}}\right|^2 + 4\left( 1+\frac{2}{\hat{s}}\right)\left( 1+\frac{2t^2}{\hat{s}}\right)|{C}_7|^2\\ &&+ \left[(1+2\hat{s})+\frac{2t^2}{\hat{s}}(1-4\hat{s})\right]\left| {C}_{10}^{\text{tot}}\right|^2+12\left( 1+\frac{2t^2}{\hat{s}}\right){C}_7 {\text{Re}}\left( {C}_9^{\text{tot}\ast}\right) , \end{array} $$

where t = ml/mb, χ = mc/mb and \({\mathscr{B}}(B\to X_{c} l^{-}\nu _{l})=(10.65\pm 0.16)\%\) Footnote 1. The phase-space factor f(χ) and the 1-loop QCD correction factor κ(χ) for the process BXclνl are given in Refs. [36, 68]

$$ \begin{array}{@{}rcl@{}} f(\chi)&=&1-8\chi^{2}+8\chi^{6}-\chi^{8}-24\chi^{4}\ln\chi , \\ \kappa(\chi)&=&1-\frac{2\alpha_{s}(\mu)}{3\pi}\left[\left( \pi^{2}-\frac{31}{4}\right) (1-\chi)^{2}+\frac{3}{2}\right] . \end{array} $$

The normalized forward-backward (FB) asymmetry and CP-violation for BXclνl can be parameterized as

$$ \begin{array}{@{}rcl@{}} A_{FB}({s})=\frac{{{\int}_{0}^{1}}dz\frac{d^{2}{\varGamma}}{d\hat{s}dz} -{\int}_{-1}^{0}dz\frac{d^{2}{\varGamma}}{d\hat{s}dz}}{{{\int}_{0}^{1}}dz\frac{d^{2}{\varGamma}} {d\hat{s}dz}+{\int}_{-1}^{0}dz\frac{d^{2}{\varGamma}}{d\hat{s}dz}} =-3\sqrt{1-\frac{4t^{2}}{\hat{s}}}\frac{E(\hat{s})}{D(\hat{s})}, \end{array} $$
(52)

with \(E(\hat {s})={\text {Re}}({C}_9^{\text {tot}} {C}_{10}^{\text {tot}\ast }\hat {s}+2{C}_7^{\text {eff}}{C}_{10}^{\text {tot} \ast })\).

$$ \begin{array}{@{}rcl@{}} A_{CP}(s)&=&\frac{d\mathcal{B}/ds(B\to X_s\ell^+\ell^-)-d\mathcal{B}/ds(\bar{B}\to \bar{X_s}\ell^+\ell^-)}{{d\mathcal{B}/ds(B\to X_s\ell^+\ell^-)+d\mathcal{B}/ds(\bar{B}\to \bar{X_s}\ell^+\ell^-)}}. \end{array} $$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, JH. The Analysis of bs+ in the Family Non-Universal \(Z^{\prime }\) Model. Int J Theor Phys 60, 26–46 (2021). https://doi.org/10.1007/s10773-020-04654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04654-3

Keywords

Navigation