Skip to main content
Log in

Monogamy Inequality in Terms of Entanglement Measures Based on Distance for Pure Multiqubit States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using very general arguments, we prove that any entanglement measures based on distance must be maximal on pure states. Furthermore, we show that Bures measure of entanglement and geometric measure of entanglement satisfy the monogamy inequality on all pure multiqubit states. Finally, using the power of Bures measure of entanglement and geometric measure of entanglement, we present a class of tight monogamy relations for pure states of multiqubit systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coffman, V., Kundu, J., Wootters, W.K.: . Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  2. Terhal, B.M.: . IBM J. Res. Dev. 48, 71 (2004)

    Article  Google Scholar 

  3. Pawlowski, M.: . Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  4. Acín, A., Gisin, N., Masanes, L.: . Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  5. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: . New J. Phys. 15, 103002 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Osborne, T.J., Verstraete, F.: . Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  7. Ou, Y.C., Fan, H.: . Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hiroshima, T., Adesso, G., Illuminati, F.: . Phys. Rev. Lett. 98, 050503 (2007)

    Article  ADS  Google Scholar 

  9. Kim, J.S., Das, A., Sanders, B.C.: . Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  10. Lancien, C., Di Martino, S., Huber, M., Piani, M., Adesso, G., Winter, A.: . Phys. Rev. Lett. 117, 060501 (2016)

    Article  ADS  Google Scholar 

  11. Bai, Y.K., Xu, Y.F., Wang, Z.D.: . Phys. Rev. Lett. 113, 100503 (2014)

    Article  ADS  Google Scholar 

  12. Song, W., Bai, Y.K., Yang, M., Cao, Z.L.: . Phys. Rev. A 93, 022306 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Luo, Y., Tian, T., Shao, L.H., Li, Y.: . Phys. Rev. A 93, 062340 (2016)

    Article  ADS  Google Scholar 

  14. Seevinck, M.P.: . Quantum Inf. Process. 9, 273 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ma, X., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: . Nat. Phys. 7, 399 (2011)

    Article  Google Scholar 

  16. Verlinde, E., Verlinde, H.: . J. High Energy Phys. 1310, 107 (2013)

    Article  ADS  Google Scholar 

  17. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: . Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. Vedral, V., Plenio, M.B.: . Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  19. Wei, T.C., Goldbart, P.M.: . Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  20. Christandl, M., Winter, A.: . J. Math. Phys. 45, 829 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Streltsov, A., Adesso, G., Piani, M., Bruß, D.: . Phys. Rev. Lett. 109, 050503 (2012)

    Article  ADS  Google Scholar 

  22. Streltsov, A., Kampermann, H., Bruß, D.: . New J. Phys. 12, 123004 (2010)

    Article  ADS  Google Scholar 

  23. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: . Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gao, L.M., Yan, F.L., Gao, T. : Quantum Inf. Process. 19, 276 (2020)

Download references

This work was supported by the National Natural Science Foundation of China under Grant No: 11475054, the Hebei Natural Science Foundation of China under Grant Nos. A2020205014, A2018205125, and the Education Department of Hebei Province Natural Science Foundation under Grant No. ZD2020167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengli Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the Lemma

Appendix: Proof of the Lemma

It is evident that the following inequalities

$$ \begin{aligned} \sqrt{1-x^{2}}+\sqrt{1-y^{2}}\geq 1+\sqrt{1-x^{2}-y^{2}} \end{aligned} $$
(A.1)

and

$$ \begin{aligned} \sqrt{(1-x^{2})(1-y^{2})}\geq \sqrt{1-x^{2}-y^{2}} \end{aligned} $$
(A.2)

hold on the domain D = {(x,y)|0 ≤ x,y,x2 + y2 ≤ 1}. By using the above inequalities, we can obtain the following conclusion.

Lemma

For η ≥ 1, we have

$$ \begin{aligned} B{^{\eta}}(\sqrt{x^{2}+y^{2}})\geq B{^{\eta}}(x)+B{^{\eta}}(y) \end{aligned} $$
(A.3)

and

$$ \begin{aligned} G{^{\eta}}(\sqrt{x^{2}+y^{2}})\geq G{^{\eta}}(x)+G{^{\eta}}(y) \end{aligned} $$
(A.4)

on the domain D = {(x,y)|0 ≤ x,y,x2 + y2 ≤ 1}.

Proof

Using the inequality (A.1), it is easy to verify that □

$$ \begin{aligned} \frac{1-\sqrt{1-x^{2}-y^{2}}}{2}\geq\frac{1-\sqrt{1-x^{2}}}{2}+\frac{1-\sqrt{1-y^{2}}}{2}. \end{aligned} $$
(A.5)

Then we get

$$ \begin{aligned} G(\sqrt{x^{2}+y^{2}})\geq G(x)+G(y). \end{aligned} $$
(A.6)

When η ≥ 1, by the inequality (A.6), one derives

$$ \begin{aligned} \left[\frac{1-\sqrt{1-x^{2}-y^{2}}}{2}\right]^{\eta} & \geq \left[\frac{1-\sqrt{1-x^{2}}}{2}+\frac{1-\sqrt{1-y^{2}}}{2}\right]^{\eta}\\ & \geq \left[\frac{1-\sqrt{1-x^{2}}}{2}\right]^{\eta}+\left[\frac{1-\sqrt{1-y^{2}}}{2}\right]^{\eta}, \end{aligned} $$
(A.7)

where in the second inequality we have used the property (1 + x)η ≥ 1 + xη for 0 ≤ x ≤ 1 and η ≥ 1. It implies that the inequality (A.4) holds, and completes the proof of the inequality (A.4).

Using the inequalities (A.1) and (A.2), we have

$$ \begin{aligned} (1+\sqrt{1-x^{2}})(1+\sqrt{1-y^{2}})\geq 2+2\sqrt{1-x^{2}-y^{2}}. \end{aligned} $$
(A.8)

Inequalities (A.5) and (A.8) together yield

$$ \begin{aligned} 1+\frac{\sqrt{1-x^{2}}}{2}+\frac{\sqrt{1-y^{2}}}{2}+\sqrt{(1+\sqrt{1-x^{2}})(1+\sqrt{1-y^{2}})}\geq 1+\frac{1+\sqrt{1-x^{2}-y^{2}}}{2}+\sqrt{2+2\sqrt{1-x^{2}-y^{2}}}. \end{aligned} $$
(A.9)

We can write (A.9) as

$$ \begin{aligned} \sqrt{\frac{1+\sqrt{1-x^{2}}}{2}}+ \sqrt{\frac{1+\sqrt{1-y^{2}}}{2}}\geq 1+ \sqrt{\frac{1+\sqrt{1-x^{2}-y^{2}}}{2}}. \end{aligned} $$
(A.10)

It follows that

$$ \begin{aligned} 2-2\sqrt{\frac{1+\sqrt{1-x^{2}-y^{2}}}{2}}\geq 2-2\sqrt{\frac{1+\sqrt{1-x^{2}}}{2}}+2-2\sqrt{\frac{1+\sqrt{1-y^{2}}}{2}}, \end{aligned} $$
(A.11)

that is

$$ \begin{aligned} B(\sqrt{x^{2}+y^{2}})\geq B(x)+B(y). \end{aligned} $$
(A.12)

When η ≥ 1, the proof of inequality (A.3) is similar to the proof of the inequality (A.4). It is now obvious that the lemma holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Yan, F. & Gao, T. Monogamy Inequality in Terms of Entanglement Measures Based on Distance for Pure Multiqubit States. Int J Theor Phys 59, 3098–3106 (2020). https://doi.org/10.1007/s10773-020-04564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04564-4

Keywords

Navigation