Skip to main content
Log in

Cooling a Mechanical Oscillator in Opto-electro-mechanical System with Frequency Modulations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The opto-electro-mechanical system as a quantum interface between electronic information and optical information plays an important role in quantum information processing. Ground-state cooling of the macroscopic mechanical oscillator is a crucial requirement for this system in order to eliminate the effect of thermal fluctuations on transmission of information. Here, we propose a scheme of ground-state cooling for a mechanical oscillator which is coupled to an optical cavity through radiation pressure force and simultaneously coupled to a superconducting microwave cavity through an effective capacitance. Meanwhile, the periodical frequency modulations are applied to the optical mode, microwave cavity, and mechanical mode, respectively. The cooling efficiency is analyzed and cooling dynamics is simulated numerically by means of covariance matrix. The results show that the Stokes heating processes can be suppressed effectively by means of frequency modulations, and the mechanical oscillator can be cooled to near its ground-state with a higher efficiency than that of a standard optomechanical system due to the double cooling channel. Moreover, a complementary cooling effect is found between these two cooling channels, i.e., a high cooling efficiency can be achieved by cooperation between a good optical cavity and a bad microwave cavity, or vice versa. This cooperative cooling of the double channel breaks the limitation of resolved-sideband regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15, 17172 (2007). https://doi.org/10.1364/OE.15.017172

    Article  ADS  Google Scholar 

  2. Zhang, C.Y., Li, H., Pan, G.X., Sheng, Z.Q.: Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier. Chin. Phys. B 25, 074202 (2016). https://doi.org/10.1088/1674-1056/25/7/074202

    Article  ADS  Google Scholar 

  3. Liu, Y.C., Hu, Y.W., Wong, C.W., Xiao, Y.F.: Review of cavity optomechanical cooling. Chin. Phys. B 22, 114213 (2013). https://doi.org/10.1088/1674-1056/22/11/114213

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2013). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  5. Liu, Y.L., Wang, C., Zhang, J., Liu, Y.X.: Cavity optomechanics: manipulating photons and phonons towards the single-photon strong coupling. Chin. Phys. B 27, 024204 (2018). https://doi.org/10.1088/1674-1056/27/2/024204

    Article  ADS  Google Scholar 

  6. Yang, J.Y., Wang, D.Y., Bai, C.H., Guan, S.Y., Gao, X.Y., Zhu, A.D., Wang, H.F.: Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express 27, 22855 (2019). https://doi.org/10.1364/oe.27.022855

    Article  ADS  Google Scholar 

  7. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014). https://doi.org/10.1103/PhysRevA.89.014302

    Article  ADS  Google Scholar 

  8. Wang, M., Lü, X. Y., Wang, Y.D., You, J.Q., Wu, Y.: Macroscopic quantum entanglement in modulated optomechanics. Phys. Rev. A 94, 053807 (2016). https://doi.org/10.1103/PhysRevA.94.053807

    Article  ADS  Google Scholar 

  9. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Sci. Rep. 7, 2545 (2017). https://doi.org/10.1038/s41598-017-02779-w

    Article  ADS  Google Scholar 

  10. Matsukevich, D.N., Kuzmich, A.: Quantum state transfer between matter and light. Science 306, 663 (2004). https://doi.org/10.1126/science.1103346

    Article  ADS  Google Scholar 

  11. Stannigel, K., Konna, P., Habraken, S.J.M., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012). https://doi.org/10.1103/PhysRevLett.109.013603

    Article  ADS  Google Scholar 

  12. Li, H.K., Ren, X.X., Liu, Y.C., Xiao, Y.F.: Photon-photon interactions in a largely detuned optomechanical cavity. Phys. Rev. A 88, 053850 (2013). https://doi.org/10.1103/PhysRevA.88.053850

    Article  ADS  Google Scholar 

  13. Yan, Y., Gu, W.J., Li, G.X.: Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Sci. China- Phys. Mech. Astron. 58, 050306 (2015). https://doi.org/10.1007/s11433-015-5647-x

    Article  Google Scholar 

  14. He, Y.: Light storage and cavity supermodes in two coupled optomechanical cavities. Phys. Rev. A 94, 063804 (2016). https://doi.org/10.1103/PhysRevA.94.063804

    Article  ADS  Google Scholar 

  15. Clark, J.B., Lecocq, F., Simmonds, R.W., Aumentado, J., Teufel, J.D.: Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541, 191 (2017). https://doi.org/10.1038/nature20604

    Article  ADS  Google Scholar 

  16. Cohadon, P.F., Heidmann, A., Pinard, M.: Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999). https://doi.org/10.1103/PhysRevLett.83.3174

    Article  ADS  Google Scholar 

  17. Arcizet, O., Cohadon, P.F., Briant, T.: High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006). https://doi.org/10.1103/PhysRevLett.97.133601

    Article  ADS  Google Scholar 

  18. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2007). https://doi.org/10.1364/FIO.2007.JWA3

    Article  ADS  Google Scholar 

  19. Poggio, M., Degen, C.L., Mamin, H.J.: Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007). https://doi.org/10.1103/PhysRevLett.99.017201

    Article  ADS  Google Scholar 

  20. Corbitt, T., Wipf, C., Bodiya, T.: Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007). https://doi.org/10.1103/PhysRevLett.99.160801

    Article  ADS  Google Scholar 

  21. Hopkins, A., Jacobs, K., Habib, S., Schwab, K.: Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003). https://doi.org/10.1103/PhysRevB.68.235328

    Article  ADS  Google Scholar 

  22. Ojanen, T., Børkje, K.: Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Phys. Rev. A 90, 013824 (2014). https://doi.org/10.1103/PhysRevA.90.013824

    Article  ADS  Google Scholar 

  23. Guo, Y., Li, K., Nie, W., Li, Y.: Electromagnetically-inducedtransparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014). https://doi.org/10.1103/PhysRevA.90.053841

    Article  ADS  Google Scholar 

  24. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature (London) 475, 359 (2011). https://doi.org/10.1038/nature10261

    Article  ADS  Google Scholar 

  25. Wilson-Rae, I., Nooshi, N., Kippenberg, T.J., Zwerger, W.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007). https://doi.org/10.1103/PhysRevLett.99.093901

    Article  ADS  Google Scholar 

  26. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007). https://doi.org/10.1103/PhysRevLett.99.093902

    Article  ADS  Google Scholar 

  27. Li, Y., Wu, L.A., Wang, Z.D.: Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A 83, 043804 (2011). https://doi.org/10.1103/PhysRevA.83.043804

    Article  ADS  Google Scholar 

  28. Aumentado, J., Lecocq, F., Clark, J.B., Simmonds, R.W., Teufel, J.D.: Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541, 191 (2017). https://doi.org/10.1038/nature20604

    Article  ADS  Google Scholar 

  29. Elste, F., Girvin, S.M., Clerk, A.A.: Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009). https://doi.org/10.1103/PhysRevLett.102.207209

    Article  ADS  Google Scholar 

  30. Feng, J.S., Tan, L., Gu, H.Q., Liu, W.M.: Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime. Phys. Rev. A 96, 063818 (2017). https://doi.org/10.1103/PhysRevA.96.063818

    Article  ADS  Google Scholar 

  31. Zhang, Y.X., Wu, J., Chen, B., Shikano, Y.: Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband regime via a dissipatively coupled oscillator. Phys. Rev. A 94, 023823 (2016). https://doi.org/10.1103/PhysRevA.94.023823

    Article  ADS  Google Scholar 

  32. Sarma, B., Sarma, A.K.: Ground-state cooling of micromechanical oscillators in the unresolved-sideband regime induced by a quantum well. Phys. Rev. A 93, 033845 (2016). https://doi.org/10.1103/PhysRevA.93.033845

    Article  ADS  Google Scholar 

  33. Bai, C.H., Wang, D.Y., Zhang, S., Wang, H.F.: Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system. Sci. Chin. Phys. 62, 970311 (2019). https://doi.org/10.1007/s11433-018-9327-8

    Article  Google Scholar 

  34. Chen, X., Liu, Y.C., Peng, P., Zhi, Y., Xiao, Y.F.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015). https://doi.org/10.1103/PhysRevA.92.033841

    Article  ADS  Google Scholar 

  35. Zeng, R.P., Zhang, S., Wu, C.F., Wu, W., Chen, P.X.: Ground-state cooling of an optomechanical resonator assisted by an atomic ensemble. J. Opt. Soc. Am. B 32, 2314 (2015). https://doi.org/10.1364/JOSAB.32.002314

    Article  ADS  Google Scholar 

  36. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zheng, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Opt. Express 26, 6143 (2018). https://doi.org/10.1364/oe.26.006143

    Article  ADS  Google Scholar 

  37. Yi, Z., Li, G.X., Wu, S.P., Yang, Y.P.: Ground-state cooling of an oscillator in a hybrid atom-optomechanical system. Opt. Express 22, 20060 (2014). https://doi.org/10.1364/oe.22.020060

    Article  ADS  Google Scholar 

  38. Li, R., Yu, D., Su, S.-L., Qian, J.: Periodically-driven facilitated high-efficiency dissipative entanglement with Rydberg atoms. arXiv:1911.03643 [physics.atom-ph]

  39. Wu, J.-L., Su, S.-L., Wang, Y., Song, J., et al.: Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field. Opt. Lett. 45, 1200 (2020)

    Article  ADS  Google Scholar 

  40. Wu, J.-L., Song, J., Su, S.-L.: Resonant interaction induced Rydberg antiblockade and its applications. Phys. Lett. A 384, 126039 (2020)

    Article  Google Scholar 

  41. Liu, Y.C., Xiao, Y.F., Luan, X.S., Gong, Q.H., Wong, C.W.: Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A 91, 033818 (2015). https://doi.org/10.1103/PhysRevA.91.033818

    Article  ADS  Google Scholar 

  42. Gu, W.J., Li, G.X.: Quantum interference effects on ground-state optomechanical cooling. Phys. Rev. A 87, 025804 (2013). https://doi.org/10.1103/PhysRevA.87.025804

    Article  ADS  Google Scholar 

  43. Liao, J.Q., Tian, L.: Macroscopic Quantum Superposition in Cavity Optomechanics. Phys. Rev. Lett. 116, 163602 (2016). https://doi.org/10.1103/PhysRevLett.116.163602

    Article  ADS  Google Scholar 

  44. Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A 98, 023816 (2018). https://doi.org/10.1103/PhysRevA.98.023816

    Article  ADS  Google Scholar 

  45. Barzanjeh, S.H., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011). https://doi.org/10.1103/PhysRevA.84.042342

    Article  ADS  Google Scholar 

  46. Barzanjeh, S. h., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012). https://doi.org/10.1103/physrevlett.109.130503

    Article  ADS  Google Scholar 

  47. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009). https://doi.org/10.1103/PhysRevLett.103.213603

    Article  ADS  Google Scholar 

  48. Teufel, J.D., Regal, C.A., Lehnert, K.W.: Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator. New J. Phys. 10, 095002 (2008). https://doi.org/10.1088/0953-4075/41/9/095002

    Article  ADS  Google Scholar 

  49. Liu, Y.X.: The squeezed component of the atomic collective phase quadrature operators with respect to a two-level atomic coherent state. Phys. Lett. A 221, 384 (1996). https://doi.org/10.1016/0375-9601(96)00565-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wu, Y.: Linear dependence of deformed two-photon quadrature operators on spatial noncommutative parameter. Phys. Lett. B 634, 74 (2006). https://doi.org/10.1016/j.physletb.2006.01.018

    Article  ADS  MATH  Google Scholar 

  51. Barzanjeh, S.H., Naderi, M.H., Soltanolkotabi, M.: Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Phys. Rev. A 84, 063850 (2011). https://doi.org/10.1103/PhysRevA.84.063850

    Article  ADS  Google Scholar 

  52. Yin, Z.Q., Li, T., Feng, M.: Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A 83, 013816 (2011). https://doi.org/10.1103/PhysRevA.83.013816

    Article  ADS  Google Scholar 

  53. Wang, Y.D., Li, Y., Xue, F., Bruder, C., Semba, K.: Cooling a micro-mechanical resonator by quantum back-action from a noisy qubit. Phys. Rev. B 80, 144508 (2009). https://doi.org/10.1103/physrevb.80.144508

    Article  ADS  Google Scholar 

  54. Martin, I., Shnirman, A., Tian, L., Zoller, P.: Ground state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004). https://doi.org/10.1103/physrevb.69.125339

    Article  ADS  Google Scholar 

  55. Tian, L.: Ground state cooling of nanomechanical resonator via parametric linear coupling. Phys. Rev. B 79, 193407 (2008). https://doi.org/10.1103/PhysRevB.79.193407

    Article  ADS  Google Scholar 

  56. Bienert, M., Barberis-Blostein, P.: Optomechanical laser cooling with mechanical modulations. Phys. Rev. A 91, 023818 (2015). https://doi.org/10.1103/PhysRevA.91.023818

    Article  ADS  Google Scholar 

  57. Zhang, W.M., Hu, K.M., Peng, Z.K., Meng, G.: Tunable micro- and nanomechanical resonators. Sensors 15, 26478 (2015). https://doi.org/10.3390/s151026478

    Article  Google Scholar 

  58. Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9, 820 (2014). https://doi.org/10.1038/nnano.2014.168

    Article  ADS  Google Scholar 

  59. Weber, P., Gëttinger, J., Tsioutsios, I., Chang, D.E., Bachtold, A.: Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14, 2854 (2014). https://doi.org/10.1021/nl500879k

    Article  ADS  Google Scholar 

  60. Remtema, T., Lin, L.: Active frequency tuning for micro resonators by localized thermal stressing effects. Sens. Actuators. A. Phys. 91, 326 (2001). https://doi.org/10.1016/s0924-4247(01)00603-3

    Article  Google Scholar 

  61. Chen, C., Lee, S., Deshpande, V.V., Lee, G.H., Lekas, M., Shepard, K., Hone, J.: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923 (2013). https://doi.org/10.1038/nnano.2013.232

    Article  ADS  Google Scholar 

  62. Song, X., Oksanen, M., Li, J., Hakonen, P.J., Sillanpää, M.A.: Graphene optomechanics realizedat microwave frequencies. Phys. Rev. Lett. 113, 027404 (2014). https://doi.org/10.1103/PhysRevLett.113.027404

    Article  ADS  Google Scholar 

  63. Xue, F., Wang, Y.D., Sun, C.P., Okamoto, H., Yamaguchi, H., Semba, K.: Controllable coupling between flux qubit and nanomechanical resonator by magnetic field. New. J. Phys. 9, 35 (2007). https://doi.org/10.1088/1367-2630/9/2/035

    Article  ADS  Google Scholar 

  64. Longhi, S., Laporta, P.: Floquet theory of intracavity laser frequency modulation. Phys. Rev. A 60, 4016 (1999). https://doi.org/10.1103/physreva.60.4016

    Article  ADS  Google Scholar 

  65. Kindness, S.J., Jessop, D.S., Wei, B., Wallis, R., Kamboj, V.S., et al.: External amplitude and frequency modulation of terahertz quantum cascade laser using metamaterial/graphene devices. Sci. Rep. 7, 7657 (2017). https://doi.org/10.1038/s41598-017-07943-w

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11564041 and No. 61822114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Dong Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Wang, T., Wang, HF. et al. Cooling a Mechanical Oscillator in Opto-electro-mechanical System with Frequency Modulations. Int J Theor Phys 59, 2781–2794 (2020). https://doi.org/10.1007/s10773-020-04538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04538-6

Keywords

Navigation