Skip to main content
Log in

Fault Tolerant Controlled Quantum Dialogue with Logical Brown States Against Collective Noise

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In view of the fact that the effects of channel noise are inevitable but easily ignored, we come up with two controlled quantum dialogue(CQD) protocols based on logical Brown states, which are against collective-dephasing and collective-rotation noises, respectively. Compared with existing protocols, there exist several outstanding advantages: firstly, Brown states, as the quantum resource, are the maximally entangled five-qubit states, which own stronger entanglement than GHZ states, W states and cluster states; secondly, the specific quantum circuits are designed to explain how two kinds of logical Brown states, to be strongly against collective noise, are constructed in theory; thirdly, the controller can be offline after quantum resource distribution and permission announcement such that his/her waiting time is effectively reduced; and fourthly, the security analysis manifests that our proposed protocols can not only eliminate the information leakage, but also resist against various well-known attacks, especially the dishonest controller’s attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang, W., Xu, B.J., Duan, J.T., Liu, B., Su, Q., He, Y.H., Jia, H.Y.: Authenticated quantum key distribution with collective detection using single photons. Int. J. Theor. Phys. 55(10), 4238–4256 (2016)

    MATH  Google Scholar 

  2. Zhu, J.R., Zhang, C.M., Wang, Q.: Biased decoy-state reference-frame-independent quantum key distribution. Eur. Phys. J. D 71(12), 319 (2017)

    ADS  Google Scholar 

  3. Zhu, K.N., Zhou, N.R., Wang, Y.Q., Wen, X.J.: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57(12), 3621–3631 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)

    MathSciNet  Google Scholar 

  5. Tang, G.Z., Sun, S.H., Li, C.Y.: Experimental point-to-multipoint plug-and-play measurement-device-independent quantum key distribution network. Chin. Phys. Lett. 36(7), 070301 (2019)

    ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  7. Cao, Z.W., Li, Y., Peng, J.Y., Chai, G., Zhao, G.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57(12), 3632–3642 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum Inf. Process. 18(5), 129 (2019)

    ADS  MathSciNet  Google Scholar 

  9. Yang, Y.H., Gao, F., Wu, X., Qin, S.J., Zuo, H.J., Wen, Q.Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    ADS  Google Scholar 

  10. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Two new controlled not gate based quantum secret sharing protocols without entanglement attenuation. Int. J. Theor. Phys. 55(5), 2342–2353 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Qin, H.W., Dai, Y.W.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16(3), 64 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55(3), 1820–1823 (2016)

    MATH  Google Scholar 

  13. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16 (3), 76 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Chang, L.W., Zheng, S.H., Gu, L.Z., Xiao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B 23(9), 090307 (2014)

    ADS  Google Scholar 

  15. Chang, L.W., Zheng, S.H., Gu, L.Z., Jin, L., Yang, Y.X.: Multiparty-controlled joint remote preparation of an arbitrary four-qubit cluster-type state via two different entangled quantum channels. Int. J. Theor. Phys. 54(8), 2864–2880 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Guo, W., Zhang, J.Z., Li, Y.P., An, W.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 10 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    ADS  Google Scholar 

  20. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62 (7), 070301 (2019)

    Google Scholar 

  21. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Cui, Y.Q., Gao, J.G.: Bidirectional quantum secure direct communication in trapped ion systems. Int. J. Theor. Phys. 55(3), 1706–1709 (2016)

    MATH  Google Scholar 

  23. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser. Phys. Lett. 15(10), 105204 (2018)

    ADS  Google Scholar 

  25. Gong, L., Tian, C., Li, J., et al.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Qi, J.M., Xu, G., Chen, X.B., Wang, T.Y., Cai, X.Q., Yang, Y.X.: Two authenticated quantum dialogue protocols based on three-particle entangled states. Quantum Inf. Process. 17(9), 247 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Dong, S., Zhang, K.J., Sun, H.W.: A controller-independent quantum dialogue protocol with four-particle states. Int. J. Theor. Phys. 58(6), 1927–1936 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Pan, H.M.: Quantum dialogue based on entanglement swapping and hadamard operation via cavity QED. Int. J. Theor. Phys. 58(3), 1017–1027 (2019)

    MATH  Google Scholar 

  29. Zhang, M.H., Peng, J.Y., Cao, Z.W.: Quantum dialogue protocol with four-mode continuous variable GHZ state. Mod. Phys. Lett. B 33(5), 1950033 (2019)

    ADS  MathSciNet  Google Scholar 

  30. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    ADS  Google Scholar 

  31. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    ADS  Google Scholar 

  32. Liu, Z.H., Chen, H.W.: Comment on “Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State”. [Chin. Phys. Lett. 30 (2013) 040305]. Chin. Phys. Lett. 30(7), 079901 (2013)

    ADS  Google Scholar 

  33. Ye, T.Y., Jiang, L.Z.: Reply to the Comment on “Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State”. [Chin. Phys. Lett. 30 (2013) 040305]. Chin. Phys. Lett. 30(7), 079902 (2013)

    ADS  Google Scholar 

  34. Chang, C.H., Luo, Y.P., Yang, C.W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Yang, Y.F., Ye, Z.Q., Tu, C.L.: Controlled secure quantum dialogue by using brown states. Acta Photonica Sinica 42(11), 1305–1310 (2013)

    Google Scholar 

  36. Kao, S.H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Kao, S.H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 139 (2017)

    ADS  MATH  Google Scholar 

  38. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement in controlled quantum dialogue using cluster states. Quantum Inf. Process. 18(4), 98 (2019)

    ADS  MATH  Google Scholar 

  39. Yin, A., Lin, W., Fan, P.: Controlled quantum dialogue scheme based on different unspecific two-particle entangled state[J]. Mod. Phys. Lett. A, 2019:1950351

  40. Liu, A.P., Guo, Q., Su, S.L., Cheng, L.Y., Wang, H.F., Zhang, S.: Entanglement purification on separate atoms in an error-detected pattern. Int. J. Theor. Phys. 58(5), 1404–1417 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18(4), 108 (2019)

    ADS  MATH  Google Scholar 

  42. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Raissi, Z., Gogolin, C., Riera, A., Acín, A.: Optimal quantum error correcting codes from absolutely maximally entangled states. J. Phys. A: Math. Theor. 51(7), 075301 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Guo, P.L., Gao, C.Y., Li, T., Li, X.H., Deng, F.G.: Quantum error rejection for faithful quantum communication over noise channels. Sci. China Phys. Mech. Astron. 62(11), 110301 (2019)

    ADS  Google Scholar 

  45. Li, Y.B., Song, T.T., Huang, W., Zhan, W.W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Xiao, M., Liu, G.: Fault-tolerant controlled quantum dialogue using logical qubit. Chin. J. Electron. 27(2), 263–269 (2018)

    Google Scholar 

  47. Chang, L.-W., Zhang, Y.-Q., et al.: Fault tolerant controlled quantum dialogue against collective noise. Chinese Phys. B 29(1), 010304 (2020)

    ADS  Google Scholar 

  48. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38(5), 1119–1131 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Li, L.Z., Qiu, D.W.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A: Math. Theor. 40(35), 10871–10885 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643–2652 (2016)

    MATH  Google Scholar 

  51. Peng, J.: Tripartite operation sharing with five-qubit brown state. Quantum Inf. Process. 15(6), 2465–2473 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16(6), 157 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states. Quantum Inf. Process. 17(5), 103 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Ji, Z.X., Zhang, H.G., Wang, H.Z.: Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access 7, 44613–44621 (2019)

    Google Scholar 

  55. Gao, F., Guo, F., et al.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China 2008(05), 111–118. (2008)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China(Grant No. 61672332), Natural Science Foundation of Shanxi Province in China(Grant No. 201801D221159), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China(Grant Nos. 2019L0470 and 2019L0479), the Key R&D Program (International Science and Technology Cooperation Project) of Shanxi Province, China(No.201903D421003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-wei Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Lw., Zhang, Yq., Tian, Xx. et al. Fault Tolerant Controlled Quantum Dialogue with Logical Brown States Against Collective Noise. Int J Theor Phys 59, 2155–2174 (2020). https://doi.org/10.1007/s10773-020-04490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04490-5

Keywords

Navigation