Skip to main content
Log in

Temperature Variation of Chaotic Optical Field in Quantum Dissipation Channel and Diffusion Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss the temperature variation of a new chaotic optical field after it passes through a single-mode quantum dissipation and diffusion channel respectively. Using the entangled state representation and the technique of integration within ordered product (IWOP) of operators, we solve the master equations and obtain the new output fields. We show the final explicit forms of the new output fields by detailed derivation. By virtue of thermo dynamics theory at finite temperature, we finally conclude the results of temperature variation of chaotic optical field both in quantum dissipation channel and diffusion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Umezawa, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. (1982)

  2. Kopf, T., Santana, A.E., Khanna, F.C.: Thermal field dynamics and bialgebras. J. Math. Phys. 38(10), 4971–4979 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. Fan, H.Y., Fan, Y.: New representation of thermal states in thermal field dynamics. Phys. Lett. A. 246(3–4), 242–246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fan, H.Y.: New application of thermo field dynamics in simplifying the calculation of wigner functions. Mod. Phys. Lett. A. 18(11), 733–742 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Louisell, W.H., Louisell, W.H.: Quantum statistical properties of radiation. (1973)

  6. Wang, J.S., Sun, C.Y.: Quantum effects of mesoscopic rlc circuit in squeezed vacuum state. Int. J. Theor. Phys. 37(4), 1213–1216 (1998)

    Article  Google Scholar 

  7. Song, T.Q.: Quantum effects of a mesoscopic capacitance coupling circuit with resistances. Int. J. Theor. Phys. 43(1), 99–110 (2004)

    Article  Google Scholar 

  8. Qiu, S.Y., Cai, S.H.: Quantum effect of dissipative mesoscopic capacitance coupled circuit. Acta. Phys. Sin-Ch Ed. 55(2), 816–819 (2006)

    Google Scholar 

  9. Fan, H.Y., Liang, X.T.: Quantum fluctuation in thermal vacuum state for mesoscopic LC electric circuit. Chin. Phys. Lett. 17(3), 174–176 (2000)

    Article  ADS  Google Scholar 

  10. Song, T.Q., Zhu, Y.J.: Quantum fluctuation in thermal vacuum state for a mesoscopic RLC circuit. Int. J. Theor. Phys. 41(12), 2411–2416 (2002)

    Article  Google Scholar 

  11. Yuan, H.C., Xu, X.X., Xu, X.F., Fan, H.Y.: Fluctuations at finite temperature and thermodynamics of mesoscopic rlc circuit calculated by using generalized thermal vacuum state. Mod. Phys. Lett. B. 25(31), 2353–2361 (2011)

    Article  ADS  Google Scholar 

  12. Xu, X.X., Hu, L.Y., Guo, Q., Fan, H.Y.: Thermal vacuum state for the two-coupled-oscillator model at finite temperature: derivation and application. Chin. Phys. B. 22(9), 090302 (2013)

    Article  ADS  Google Scholar 

  13. Buzek, V.V., Vidiella-Barranco, A., Knight, P.L.: Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A. 45(9), 6570–6585 (1992)

    Article  ADS  Google Scholar 

  14. Ma, S., Petersen, I.R., Woolley, M.J.: Linear quantum systems with diagonal passive hamiltonian and a single dissipative channel. Syst. Control Lett. 99(Complete), 64–71 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fan, H.Y., Hu, L.Y.: New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation. Opt. Commun. 281(22), 5571–5573 (2008)

    Article  ADS  Google Scholar 

  16. Ren, G., Du, J.M., Zhang, W.H.: Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel. (2018)

  17. Puri, R.R., Agarwal, G.S.: Unitarily inequivalent classes of minimum uncertainty states of su(1, 1). Int. J. Mod. Phys. B. 10(13n14), 1563–1572 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. Fan, H.Y., Wu, Z., Physics, D.O., University, N: Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel. Acta. Phys. Sin-Ch Ed. 64(8), 131–134 (2015)

    Google Scholar 

  19. Hu, L.Y., Fan, H.Y.: Wigner functions of thermo number state, photon subtracted and added thermo vacuum state at finite temperature. Mod. Phys. Lett. A. 24(28), 2263–2274 (2009)

    Article  ADS  Google Scholar 

  20. Zhang, Z.X., Fan, H.Y.: Some properties of states engendered by the excitations on a two-mode squeezed vacuum state. Phys. Lett. A. 174(3), 206–209 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. (2001)

  22. Wiseman, H.M., Milburn, G.J.: Quantum measurement and control. (2014)

  23. Fan, H.Y.: Time evolution of the wigner function in the entangled-state representation. Phys. Rev. A. 65(6), 064102 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fan, H.Y., Lu, H.L., Fan, Y.: Newton–leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations. Ann. Phys-New York. 321(2), 480–494 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Fan, H.Y., Zaidi, H.R.: Application of iwop technique to the generalized weyl correspondence. Phys. Lett. A. 124(6), 303–307 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Fan, H.Y., Klauder, J.R.: Eigenvectors of two particles’ relative position and total momentum. Phys. Rev. A. 49(2), 704 (1994)

    Article  ADS  Google Scholar 

  27. Preskill, J.: Lecture notes for physics 229: Quantum information and computation. California Institute of Technology 16 (1998)

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (grant number KJ2019A0688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-zao Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation of Eq. ( 16 )

$$ {\displaystyle \begin{array}{c}\rho (t)=\sum \limits_{n=0}^{\infty}\frac{T^n}{n!}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}{a}_2^n{\rho}_0{a}_2^{\dagger n}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}\\ {}=\sum \limits_{n=0}^{\infty}\frac{T^n\mathit{\sec}{h}^2\theta }{n!}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}{a}_2^n{e}^{a_1^{\dagger }{a}_2^{\dagger } tanh\theta}\left|00\right\rangle \left.\left\langle 0\right.0\right|{e}^{a_1{a}_2 tanh\theta}{a}_2^{\dagger n}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}\end{array}} $$
(A1)

By using unitary transformation, we have

$$ \rho (t)=\sum \limits_{n=0}^{\infty}\frac{T^n\mathit{\sec}{h}^2\theta }{n!}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}{a}_2^n{e}^{a_1^{\dagger }{a}_2^{\dagger } tanh\theta}{e}^{\kappa t{a}_2^{\dagger }{a}_2}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}\left|00\right\rangle \left.\left\langle 0\right.0\right|{e}^{-\kappa t{a}_2^{\dagger }{a}_2}{e}^{\kappa t{a}_2^{\dagger }{a}_2}{e}^{a_1{a}_2 tanh\theta}{a}_2^{\dagger n}{e}^{-\kappa t{a}_2^{\dagger }{a}_2}. $$
(A2)

According to identity transformation of operator

$$ \exp \left(\gamma {a}^{\dagger }a\right)f\left({a}^{\dagger },a\right)\exp \left(-\gamma {a}^{\dagger }a\right)=f\left({ae}^{-\gamma },{a}^{\dagger }{e}^{\gamma}\right), $$
(A3)

we can get

$$ {\displaystyle \begin{array}{c}\rho (t)=\sum \limits_{n=0}^{\infty}\frac{T^n\mathit{\sec}{h}^2\theta }{n!}{\left({a}_2{e}^{kt}\right)}^n{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{- kt} tanh\theta}\left|00\right\rangle \left.\left\langle 0\right.0\right|{e}^{a_1{a}_2{e}^{- kt} tanh\theta}{\left({a}_2^{\dagger }{e}^{kt}\right)}^n\\ {}=\sum \limits_{n=0}^{\infty}\frac{T^n\mathit{\sec}{h}^2\theta }{n!}{\left({e}^{kt}\right)}^{2n}{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{- kt} tanh\theta}{e}^{-{a}_1^{\dagger }{a}_2^{\dagger }{e}^{- kt} tanh\theta}{\left({a}_2\right)}^n{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{- kt} tanh\theta}\left|00\right\rangle \\ {}\times \Big\langle 00{e}^{a_1{a}_2{e}^{- kt} tanh\theta}{\left({a}_2^{\dagger}\right)}^n{e}^{-{a}_1{a}_2{e}^{- kt} tanh\theta}{e}^{a_1{a}_2{e}^{- kt} tanh\theta}.\end{array}} $$
(A4)

Further, by using the following operator identity

$$ {e}^{-{a}_1^{\dagger }{a}_2^{\dagger }{e}^{- kt}\tanh \theta }{\left({a}_2\right)}^n{\mathrm{e}}^{a_2^{\dagger }{a}_2^{\dagger }{e}^{- kt}\tanh \theta }={\left({a}_2+{a}_1^{\dagger }{e}^{- kt}\tanh \theta \right)}^n, $$
(A5)

and binomial theorem, we can deduce

$$ \rho (t)=\sum \limits_{n=0}^{\infty}\;\frac{T^n{\mathit{\operatorname{sech}}}^2\theta }{n!}{\left({e}^{kt}\right)}^{2n}{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{- kt}\tanh \theta }{\left({a}_2+{a}_1^{\dagger }{e}^{- kt}\tanh \theta \right)}^n\left|00\right\rangle \left\langle 00\right|{\left({a}_2^{\dagger }+{a}_1{e}^{- kt}\tanh \theta \right)}^n{e}^{a_1{a}_2{e}^{- kt}\tanh \theta } $$
$$ =\sum \limits_{n=0}^{\infty}\;\frac{T^n{\mathit{\operatorname{sech}}}^2\theta }{n!}{\left({e}^{kt}\right)}^{2n}{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{- kt}\tanh \theta }{\left({a}_1^{\dagger }{e}^{- kt}\tanh \theta \right)}^n\left|00\right\rangle \left\langle 00\right|{\left({a}_1{e}^{- kt}\tanh \theta \right)}^n{e}^{a_1{a}_2{e}^{- kt}\tanh \theta }. $$
(A6)

Finally, we can derive the explicit form of ρ(t)

$$ \rho (t)=\sum \limits_{n=0}^{\infty}\;\frac{T^n\tan {\mathrm{h}}^{2n}\theta {\mathit{\operatorname{sech}}}^2\theta }{n!}{e}^{a_1^{\dagger }{a}_2^{\dagger }{e}^{-\kappa t}\tanh \theta }{a}_1^{\dagger n}\left|00\right\rangle \left\langle 00\right|{a}_1^n{e}^{a_1{a}_2{e}^{-\kappa t}\tanh \theta }. $$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cz., Fan, Hy. Temperature Variation of Chaotic Optical Field in Quantum Dissipation Channel and Diffusion Channel. Int J Theor Phys 59, 2137–2146 (2020). https://doi.org/10.1007/s10773-020-04487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04487-0

Keywords

Navigation