Skip to main content
Log in

Semi-Quantum Private Query Protocol Without Invoking the Measurement Capability of Classical User

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Yang et al. suggested a semi-quantum private query (SQPQ) protocol (Quantum Inf Process (2015)14:1017) using one quantum state. Later, Yu et al. (Quantum Inf Process (2015)14:4201) pointed out that Yang et al.’s SQPQ protocol runs the risk of user privacy being invaded, i.e., the database owner can manipulate the conclusiveness of bits definitely by launching a special kind of fake initial state attack, and then constructed an improved quantum private query (QPQ) protocol to avoid this risk. However, Yu et al.’s QPQ protocol is not semi-quantum. In this paper, we successfully design the SQPQ protocol without running the risk of user privacy being invaded. The proposed SQPQ protocol has the following features: (1) it only employs one kind of quantum state as the initial quantum state; (2) it doesn’t require the classical user to perform the measurement operation; and (3) it is cheat-sensitive, which means that if the database privacy or the user privacy is invaded, the attack behavior can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J Comput. Syst, Sci. 60(3), 592–629 (2000) Earlier version in STOC 98

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 175–179. IEEE Press, Bangalore (1984)

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans Inf Theor. 56, 3465–3477 (2010)

    Article  MathSciNet  Google Scholar 

  5. Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L., Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev. A. 80, 010302 (2009)

    Article  Google Scholar 

  6. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A. 84, 022313 (2011)

    Article  ADS  Google Scholar 

  7. Scarani, V., Ac’ın, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  8. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A. 83, 022301 (2011)

    Article  ADS  Google Scholar 

  9. Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Express. 20(16), 17411–17420 (2012)

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yu, F., Qiu, D.W., Situ, H.Z., Wang, X.M., Long, S.: Enhancing user privacy in SARG04-based private database query protocols. Quantum Inf. Process. 14, 4201–4210 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint- measurement attack. Phys. Rev. A. 93, 042318 (2016)

    Article  ADS  Google Scholar 

  15. Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A. 380, 4033–4038 (2016)

    Article  ADS  Google Scholar 

  16. Zhou, Y.H., Bai, X.W., Li, L.L., Shi, W.M., Yang, Y.G.: A quantum private query protocol for enhancing both user and database privacy. Commun. Theor. Phys. 69(1), 31–36 (2018)

  17. Chang, Y., Zhang, S.B., Wan, G.G., Yan, L.L., Zhang, Y., Li, X.Y.: Practical two-way QKD-based quantum private query with better performance in user privacy. Int. J. Theor. Phys. 58, 2069–2080 (2019)

    Article  Google Scholar 

  18. Du, Z.L., Li, X.L.: Robust high capability QKD-based database private query. Int. J. Theor. Phys. 58, 391–398 (2019)

    Article  Google Scholar 

  19. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  21. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  22. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  23. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of Two-Way Quantum Communication Protocols against Trojan Horse Attack, http://arxiv.org/pdf/quant-ph/0508168.pdf (2005)

  24. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74, 054302 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding by the Natural Science Foundation of Zhejiang Province (Grant No.LY18F020007) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY., Li, HK. & Hu, JL. Semi-Quantum Private Query Protocol Without Invoking the Measurement Capability of Classical User. Int J Theor Phys 59, 2044–2051 (2020). https://doi.org/10.1007/s10773-020-04476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04476-3

Keywords

Navigation