Skip to main content
Log in

Tripartite Quantum Operation Sharing with Six-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper a tripartite quantum operation sharing scheme is put forward with a six-qubit entangled state presented by Chen et al. (Phys. Rev. A 74, 032324, 2006). Within the scheme the success probability of sharing the operation is deterministic. The scheme security is analyzed and thus confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: . Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A.: . Phys. Lett. A 314, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Zhang, Z.J., Zhong, X.M.: . Phys. Lett. A 341, 55–59 (2005)

    Article  ADS  Google Scholar 

  4. Yeo, Y., Chua, W.K.: . Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  5. Zhang, Z.J.: . Phys. Lett. A 352, 55 (2006)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  8. Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  9. Yan, Feng-Li, Gao, Ting: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  10. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett 87, 077902 (2001)

    Article  ADS  Google Scholar 

  13. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  15. Zhang, W.B.: Deterministic bidirectional quantum-controlled teleportation with six-qubit maximally entangled state. Modern Physics Letters A 34, 1950290 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Feng, T., Guo, Z., Cao, H.: Witness for Non-Quasi maximally entangled states. Int J Theor Phys 55, 5202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, Z., Cao, H., Qu, S.: Structures of three types of local quantum channels based on quantum correlations. Found Phys. 45, 355 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, H.-F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)

    Article  ADS  Google Scholar 

  19. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: . Nat. 390, 575 (1997)

    Article  ADS  Google Scholar 

  20. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: . Nature (London) 430, 849 (2004)

    Article  ADS  Google Scholar 

  21. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  22. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int.J. Theor. Phys. 54, 877 (2015)

    Article  MATH  Google Scholar 

  23. Ji, Q.B., et al.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)

    Article  ADS  MATH  Google Scholar 

  24. Xing, H., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, D.C., Liu, Y.M., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process. 12, 3527 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Wang, S.F., Liu, Y.M., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quant. Inf. Process. 14, 4255 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quant. Inf. Process. 15, 2465 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Chen, P.X., Zhu, S.Y., Guo, G.C.: . Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  30. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev.A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  31. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  32. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Riebe, M., Haffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  34. Barrett, M.D., Chiaverini, J., Schaetz, T., et al.: Deterministic quantum teleportation of atomic qubits. Nature 737, 429 (2004)

    Google Scholar 

  35. Deng, H.G., Zheng, X.J.: . Sci. China-Phys. Mech. Astron. 55, 1427 (2013)

    Article  ADS  Google Scholar 

  36. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  37. Barrett, M.D., et al.: Deterministic quantum teleportation with atoms. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  38. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  39. Zhang, Z.J., et al.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60 (2005)

    Article  ADS  MATH  Google Scholar 

  40. Deng, F.G., et al.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329 (2005)

    Article  ADS  MATH  Google Scholar 

  41. Zhang, Z.J., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  42. Xiao, L., Long, G.L., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  43. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev.A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  44. Zhou, P., Li, X.H., et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  45. Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11375011, 11847108 and 11905131, and the Natural Science Foundation of Jiangxi Province (20192BAB212005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, W. & Ye, B. Tripartite Quantum Operation Sharing with Six-Qubit Entangled State. Int J Theor Phys 59, 1605–1611 (2020). https://doi.org/10.1007/s10773-020-04428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04428-x

Keywords

Navigation