Skip to main content
Log in

Implication of Z-mediated FCNC on semileptonic decays Bs→φl+land B+→K+l+l

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Rare B meson decays mediated by flavour changing neutral current (FCNC) transition play interesting role to probe the flavour sector of the standard model (SM). Generally at the tree level, FCNC processes are not allowed in the SM but occurs at the loop levels. This gives an excellent hunting ground for new physics (NP). From various experimental studies it is found that the FCNC processes having quark level transition bs are challenging. Here, we investigate different kinematic observables like forward-backward asymmetry, differential branching ratio and lepton polarization asymmetry for semileptonic rare B decay modes Bsφl+l and B+K+l+l (l = μ, τ) considering the contribution of Z-mediated FCNC. A noticeable deviation of the observables for these decay channels from the SM value is found because of non-universal Zbs coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Aaij et al. (LHCb Collaboration), JHEP 1602, 104 (2016)

  2. S. Wehle et al. (Belle Collaboration), Phys. Rev. Lett. 118, 111801 (2017)

  3. A. Absesselam et al. (Belle Collaboration), arXiv:1604.04042 [hep-ex]

  4. Report, T.: Atlas-CONF-2017-023. CERN, Geneva (2017). https://cds.cern.ch/record/2258146/files/ATLAS-CONF-2017-023.pdf

    Google Scholar 

  5. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111, 191801 (2013)

  6. R. Aaij et al. (LHCb Collaboration), JHEP 1509, 179 (2015)

  7. R. Aaij et al. (LHCb Collaboration), JHEP 1406, 133 (2014)

  8. Khachatryan, V., et al.: CMS Collab. Phys. Lett. B. 753, 424 (2016)

    Article  ADS  Google Scholar 

  9. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 151601 (2014)

  10. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 191801 (2019)

  11. A. Abdesselam et al. (Belle Collaboration), arXiv: 1908.01848 [hep-ex]

  12. R. Aaij et al. (LHCb Collaboration), JHEP 1708, 055 (2017) [arXiv:1705.05802 [hep-ex]]

  13. A. Abdesselam et al. (Belle Collaboration), arXiv: 1904.02440 [hep-ex]

  14. Glashow, S.L., Iliopoulos, J., Maiani, L.: Phys. Rev. D. 2, 1285 (1970)

    Article  ADS  Google Scholar 

  15. Cabibbo, N.: Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  16. Kobayashi, M., Maskawa, K.: Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  17. A. Ali, Deutsches Elektronen synchrotron DESY Report No. 97–192

  18. P. Ball et al., “B decays,” in proceedings of the workshop on Standard Model Physics at the LHC, 1999, (CERN, Geneva, Switzerland, 2000)

  19. D. S. Du and M. Z. Yang, Phys. Rev. D 54, 882 (1996) [arXiv: hep-ph/9510267]

  20. T. M. Aliev, D. A. Demir, E. Iltan and N. K. Pak, Phys. Rev. D 54, 851 (1996) [arXiv: hep-ph/9511352]

  21. D. A. Demir, K. A. Oliev and M. B. Voloshin, Phys. Rev. D 66, 034015 (2002) [arXiv: hep-ph/0204119]; C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 64, 074014 (2001) [arXiv: hep-ph/0104284]; G. Erkol and G. Turan, JHEP 0202, 015 (2002) [arXiv: hep-ph/0201055]

  22. E. O. Iltan, Int. J. Mod. Phys. A 14, 4365 (1999) [arXiv: hep-ph/9807256]; T. M. Aliev and M. Savci, Phys. Rev. D 60, 014005 (1999) [arXiv: hep-ph/9812272]

  23. Hu, Q.Y., Li, X.Q., Yang, Y.D.: Eur. Phys. J. C. 77, 190 (2017)

    Article  ADS  Google Scholar 

  24. Ali, A., Ball, P., Handoko, L.T., Hiller, G.: Phys. Rev. D. 61, 074024 (2000)

    Article  ADS  Google Scholar 

  25. S. Sahoo and R. Mohanta, New J. Phys.18, 013032 (2016) [arXiv: 1509.06248 [hep-ph]]

  26. Chiang, C.W., Run-Hui, L., Cai-Dian, L.: Chin. Phys. C. 36, 14 (2012)

    Article  ADS  Google Scholar 

  27. Colangelo, P., De Fazio, F., Santorelli, P., Scrimieri, E.: Phys. Rev. D. 53, 3672 (1996)

    Article  ADS  Google Scholar 

  28. Mohanta, R.: Phys. Rev D. 89, 014020 (2014)

    Article  ADS  Google Scholar 

  29. Xu, Y.G., Zhou, L.H., Li, B.Z., Wang, R.M.: Chin. Phys. C. 37, 063104 (2013)

    Article  ADS  Google Scholar 

  30. Li, Y., Hua, J.: Eur. Phys. J. C. 71, 1764 (2011)

    Article  ADS  Google Scholar 

  31. Ahmed, I., Aslam, M.J., Paracha, M.A.: Phys. Rev. D. 88, 014019 (2013)

    Article  ADS  Google Scholar 

  32. Singh, S.R., Mawlong, B., D’cruz, R.: Int. J. Mod. Phys. A. 33, 1850125 (2018)

    Article  ADS  Google Scholar 

  33. Langacker, P., Plümacher, M.: Phys. Rev. D. 62, 013006 (2000)

    Article  ADS  Google Scholar 

  34. Nir, Y., Silverman, D.: Phys. Rev. D 42, 1477 (1990); D. Silverman, Phys. Rev. D 45, 1800 (1992); Int. J. Mod. Phys. A 11, 2253 (1996); Y. Nir and R. Rattazzi, in Heavy Flavours II, Edited by a. J. Buras and M. Linder, p. 755. World Scientific, Singapore (1998)

    Google Scholar 

  35. Langacker, P., London, D.: Phys. Rev. D. 38, 886 (1988)

    Article  ADS  Google Scholar 

  36. Buras, A.J., Münz, M.: M. Misiak, Nucl. Phys. B 393, 23 (1993); ibid. 439, 461 (E) (1995). Phys. Rev. D. 52, 186 (1995)

    Article  ADS  Google Scholar 

  37. W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub, M. Wick, JHEP 0901, 019 (2009) [arXiv: 0811.1214]

  38. Chetyrkin, K.G., Misiak, M., Münz, M.: Ibid. 425, 414 (1998) [arXiv: hep-ph/9612313]. Phys. Lett. B. 400, 206 (1997)

    Article  ADS  Google Scholar 

  39. Ahmed, I., Aslam, M.J., Paracha, M.A.: Phys. Rev. D. 89, 015006 (2014)

    Article  ADS  Google Scholar 

  40. G. Buchalla, A. Buras and M. Lautenbacher, Rev. Mod. Phys 68, 1125 (1996) [arXiv: hep-ph/9512380]

  41. A. Ali, arXiv: hep-ph/9709507

  42. Lim, C.S., Morozumi, T., Sanda, A.I.: Phys. Lett. B. 218, 343 (1989)

    Article  ADS  Google Scholar 

  43. Ali, A., Mannel, T., Morozumi, T.: Phys. Lett. B. 273, 505 (1991)

    Article  ADS  Google Scholar 

  44. Kruger, F., Sehgal, L.M.: Phys. Lett. B. 380, 199 (1996)

    Article  ADS  Google Scholar 

  45. Asatrian, H.H., Asatrian, H.M., Greub, C., Walker, M.: Phys. Lett. B. 507, 162 (2001)

    Article  ADS  Google Scholar 

  46. Bobeth, C., Misiak, M., Urban, J.: Nucl. Phys. B. 574, 291 (2000)

    Article  ADS  Google Scholar 

  47. Melikhov, D., Nikitin, N., Simula, S.: Phys. Lett. B. 430, 332 (1998)

    Article  ADS  Google Scholar 

  48. Soares, J.M.: Nucl. Phys. B. 367, 575 (1991)

    Article  ADS  Google Scholar 

  49. Asatrian, G.M., Ioannisian, A.: Phys. Rev. D. 54, 5642 (1996)

    Article  ADS  Google Scholar 

  50. Soares, J.M.: Phys. Rev. D. 53, 241 (1996)

    Article  ADS  Google Scholar 

  51. Chen, C.H., Geng, C.Q.: Phys. Rev. D. 64, 074001 (2001)

    Article  ADS  Google Scholar 

  52. T. Huber, T. Hurth and E. Lunghi, arXiv: 0807.1940

  53. Grinstein, B., Savage, M.J., Wise, M.B.: Nucl. Phys. B. 319, 271 (1945)

    Article  ADS  Google Scholar 

  54. Misiak, M.: Nucl. Phys. B. 393, 23 (1993)

    Article  ADS  Google Scholar 

  55. Beneke, M., Buchalla, G., Neubert, M., Sachrajda, C.T.: Eur. Phys. J. C. 61, 439 (2009)

    Article  ADS  Google Scholar 

  56. Rai Choudhury, S., Gaur, N.: Phys. Rev. D. 66, 094015 (2002)

    Article  ADS  Google Scholar 

  57. Nayek, P., Maji, P., Sahoo, S.: Physical Review D. 99, 013005 (2019)

    Article  ADS  Google Scholar 

  58. Deshpande, N.G., Trampetic, J., Panose, K.: P. J. O’Donnell and H. K. Tung, Phys. Rev. D 43, 2067 (1991). Phys. Rev. D. 39, 1461 (1989)

    Article  ADS  Google Scholar 

  59. S. Rai Choudhury, A. Gupta and N. Gaur, Phys. Rev. D 60, 115004 (1999) [arXiv: hep-ph/9902355]; S. Rai. Choudhury, N. Gaur and A. Gupta, Phys. Lett. B 482, 383 (2000) [arXiv: hep-ph/9909258]

  60. J. L. Hewett, Phys. Rev. D 53, 4964 (1996) [arXiv: hep-ph/9506289]

  61. Melikov, D., Nikitin, N., Simula, S.: Phys. Rev. D. 57, 6814 (1998)

    Article  ADS  Google Scholar 

  62. N. Isgur and M. B. wise, Phys. Rev. D 42, 2388 (1990)

  63. S. Rai Choudhury, N. Gaur and N. Mahajan, Phys. Rev. D 66, 054003 (2002) [arXiv: hep-ph/0203041]; S. Rai Choudhury and N. Gaur, [ arXiv: hep-ph/0205076]

  64. S. Fukae, C. S. Kim and T. Yoshikawa, Phys. Rev. D 61, 074015 (2000) [arXiv: hep-ph/9908229]

  65. T. M. Aliev, M. K. Cakamak and M. Savci, Nucl. Phys. B 607, 305 (2001) [arXiv: hep-ph/0009133]; T. M. Aliev, M. K. Cakmak, A. Ozpineci and M. Savci, Nucl. Phys. Rev. D 64, 055007 (2001) [arXiv: hep-ph/0009133]

  66. Bando, M., Kugo, T.: M. Bando, T. Kugo and K. Yoshioka, Prog. Theor. Phys. 104, 211 (2000). Prog. Theor. Phys. 101, 1313 (1999)

    Article  ADS  Google Scholar 

  67. Mohanta, R.: Phys. Rev. D. 71, 114013 (2005)

    Article  ADS  Google Scholar 

  68. Giri, A.K., Mohanta, R.: Eur. Phys. J. C. 45, 151 (2006)

    Article  ADS  Google Scholar 

  69. Mohanta, R.: Eur. Phys. J. C. 71, 1625 (2011)

    Article  ADS  Google Scholar 

  70. Del Aguila, F., Cortes, J.: Phys. Lett. B. 156, 243 (1985)

    Article  ADS  Google Scholar 

  71. Branco, G.C., Lavoura, L.: Nucl. Phys. B. 278, 738 (1986)

    Article  ADS  Google Scholar 

  72. Nir, Y., Silverman, D.: Nucl. Phys. B. 345, 301 (1990)

    Article  ADS  Google Scholar 

  73. Branco, G.C., Morozumi, T., Prada, P.A., Rebelo, M.N.: Phys. Rev. D. 48, 1167 (1993)

    Article  ADS  Google Scholar 

  74. Barger, V.D., Berger, M.S., Phillips, R.J.N.: Phys. Rev. D. 52, 1663 (1995)

    Article  ADS  Google Scholar 

  75. Lavoura, L., Silva, J.P.: Phys. Rev. D. 47, 1117 (1993)

    Article  ADS  Google Scholar 

  76. Barenboim, G., Botella, F.J.: Phys. Lett. B. 433, 385 (1998)

    Article  ADS  Google Scholar 

  77. Barenboim, G., Botella, F.J., Vives, O.: Phys. Rev. D. 64, 015007 (2001)

    Article  ADS  Google Scholar 

  78. Barenboim, G., Botella, F.J., Vives, O.: Nucl. Phys. B. 613, 285 (2001)

    Article  ADS  Google Scholar 

  79. Chen, C.H., Geng, C.Q., Wang, W.: JHEP. 1011, 089 (2010)

    Article  ADS  Google Scholar 

  80. Alok, A.K., Baek, S., London, D.: JHEP. 1107, 111 (2011)

    Article  ADS  Google Scholar 

  81. Botella, F.J., Branco, G.C., Nebot, M.: JHEP. 1212, 040 (2012)

    Article  ADS  Google Scholar 

  82. Deshpande, N.G., Ghosh, D.K., He, X.G.: Phys. Rev. D. 70, 093003 (2004)

    Article  ADS  Google Scholar 

  83. Deshpande, N.G., Ghosh, D.K.: Phys. Lett. B. 593, 135 (2004)

    Article  ADS  Google Scholar 

  84. Q. Chang, X. Q. Li and Y. D. Yang, JHEP 1002, 082 (2010) [arXiv: 0907.4408[hep-ph]]

  85. A. J. Buras, [hep-ph/9806471]; [hep-ph/0101336]

  86. Barger, V., Chiang, C.W., Jiang, J., Langacker, P.: Phys. Lett. B. 596, 229 (2004)

    Article  ADS  Google Scholar 

  87. T. Tanabashi et al., (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

  88. Charles, J., et al.: Phys. Rev. D. 91, 073007 (2015)

    Article  ADS  Google Scholar 

  89. Sahoo, S., Mohanta, R.: J. Phys. G: Nucl. Part. Phys. 44, 035001 (2017)

    Article  ADS  Google Scholar 

  90. Singirala, S., Sahoo, S., Mohanta, R.: Phys. Rev. D. 99, 035042 (2019)

    Article  ADS  Google Scholar 

  91. Mohanta, R., Giri, A.K.: Phys. Rev. D. 78, 116002 (2008)

    Article  ADS  Google Scholar 

  92. J. Lyon and R. Zwicky, arXiv:1406.0566 [hep-ph]

  93. S. Jäger and J. Martin Camalich, JHEP 1305, 043 (2013) [arXiv: 1212.2263[hep-ph]]

  94. M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini and M. Valli, JHEP 1606, 116 (2016) [arXiv: 1512.01157[hep-ph]]

  95. V. G. Chobanova, T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshantpour, JHEP 1707, 021 (2017) [arXiv: 1702.02234[hep-ph]]

  96. T. Hurth, F. Mahmoudi, D. M. Santos and S. Ncshatpour, Phys. Rev. D 96, 095034 (2017) [arXiv: 1705.06274 [hep-ph]]

  97. A. Arbey, T. Hurth, F. Mahmoudi and S. Ncshatpour, Phys. Rev. D 98, 095027 (2018) [arXiv: 1806.02791 [hep-ph]]

  98. A. Arbey, T. Hurth, F. Mahmoudi, D. M. Santos and S. Ncshatpour, [arXiv: 1904.08399 [hep-ph]]

  99. R. Aaij et al. (LHCb Collaboration), JHEP 1307, 084 (2013) [arXiv: 1305.2168[hep-ex]]

  100. W. Altmannshofer and D. M. Straub, Eur. Phys. J. C 75, 382 (2015) [arXiv: 1411.3161[hep-ph]]

  101. R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 77, 161 (2017) [arXiv: 1612.06764[hep-ex]]

  102. Ball, P., Zwicky, R.: Phys. Rev. D. 71, 014029 (2005)

    Article  ADS  Google Scholar 

  103. Ball, P., Zwicky, R.: Phys. Rev. D. 71, 014015 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for useful comments for the improvement of the manuscript. Nayek and Sahoo are grateful to SERB, DST, Govt. of India for financial support (EMR/2015/000817). Biswas thanks NIT Durgapur for providing fellowship. Maji is thankful to DST, Govt. of India for providing INSPIRE Fellowship (IF160115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nayek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 3 Input parameters for form factor calculations

Appendix 2

1.1 Form factors for Bsφ transition

The form factors of Bs → φ transition are given as [24, 102].

$$ g\left({q}^2\right)=\frac{V\left({q}^2\right)}{M_B+{M}_{\varphi }} $$
(70)
$$ f\left({q}^2\right)=\left({M}_B+{M}_{\varphi}\right){A}_1\left({q}^2\right) $$
(71)
$$ {a}_{+}\left({q}^2\right)=\frac{A_2\left({q}^2\right)}{M_B+{M}_{\varphi }} $$
(72)
$$ {a}_{-}\left({q}^2\right)=-\frac{2{M}_{\varphi }}{q^2}\left({A}_3\left({q}^2\right)-{A}_0\left({q}^2\right)\right) $$
(73)
$$ \kern0.75em {g}_{+}\left({q}^2\right)=-{T}_1\left({q}^2\right) $$
(74)
$$ \kern0.5em {g}_{-}\left({q}^2\right)=-\frac{{M_B}^2-{M_{\varphi}}^2}{q^2}\left({T}_1\left({q}^2\right)-{T}_2\left({q}^2\right)\right) $$
(75)
$$ {g}_0\left({q}^2\right)=-\frac{2}{q^2}\left({T}_2\left({q}^2\right)-{T}_1\left({q}^2\right)+\frac{q^2}{{M_B}^2-{M_{\varphi}}^2}{T}_3\left({q}^2\right)\right) $$
(76)

The definition of V(q2), A0(q2) and T1(q2) can be parameterized as

$$ \kern2.75em F\left({q}^2\right)=\frac{r_1}{1-{q}^2/{m}_R^2}+\frac{r_2}{1-{q}^2/{m}_{fit}^2} $$
(77)

Similarly A2(q2), \( \overset{\sim }{T_3} \) and A1(q2), T2(q2) are defined by (B9) and (B10) respectively

$$ \kern2.75em F\left({q}^2\right)=\frac{r_1}{1-{q}^2/{m}^2}+\frac{r_2}{{\left(1-{q}^2/{m}^2\right)}^2} $$
(78)
$$ \kern2.75em F\left({q}^2\right)=\frac{r_2}{1-{q}^2/{m}_{fit}^2} $$
(79)

T3(q2) and A3(q2) can be parameterized as

$$ \kern3.25em {T}_3\left({q}^2\right)=\frac{{M_B}^2-{M_{\varphi}}^2}{q^2}\left(\overset{\sim }{T_3}\left({q}^2\right)-{T}_2\left({q}^2\right)\right) $$
(80)
$$ \kern4em {A}_3\left({q}^2\right)=\frac{M_B+{M}_{\varphi }}{2{M}_{\varphi }}{A}_1\left({q}^2\right)-\frac{M_B-{M}_{\varphi }}{2{M}_{\varphi }}{A}_2\left({q}^2\right) $$
(81)

Appendix 3

1.1 Form factors for B+K+ transition

The form factors defined for B+ → K+ transition are represented as follows [103].

$$ {f}_{-}\left({q}^2\right)=\frac{{M_B}^2-{M_{K^{+}}}^2}{q^2}\left({f}_0\left({q}^2\right)-{f}_{+}\left({q}^2\right)\right) $$
(82)
$$ t\left({q}^2\right)=\frac{f_T\left({q}^2\right)}{M_B+{M}_{K^{+}}}. $$
(83)

Here f+(q2), fT(q2) and f0(q2) and can be expressed by following functions which are represented by eqs. (C3) and (C4)

$$ {f}_{+(T)}\left({q}^2\right)=\frac{r_1}{1-{q}^2/{m}_1^2}+\frac{r_2}{{\left(1-{q}^2/{m}_1^2\right)}^2} $$
(84)
$$ {f}_0\left({q}^2\right)=\frac{r_2}{1-{q}^2/{m}_{fit}^2}.\kern0.5em $$
(85)

In the above equations, the parameters used in the fit functions of the form factors are taken from [24, 101] and encapsulated in the following table.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayek, P., Biswas, S., Maji, P. et al. Implication of Z-mediated FCNC on semileptonic decays Bs→φl+land B+→K+l+l. Int J Theor Phys 59, 1418–1441 (2020). https://doi.org/10.1007/s10773-020-04412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04412-5

Keywords

Navigation