Skip to main content
Log in

Quantum-Memory-Assisted Entropic Uncertainty Relation and Quantum Coherence in Structured Reservoir

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The uncertainty principle is regarded as one of basics in quantum mechanics, which sets up a strict lower bound to quantify the prediction on the outcome concerning a set of incompatible measurements. In this paper, we investigate the dynamic behaviors of quantum-memory-assisted entropic uncertainty relation (EUR), and quantum coherence in structured reservoir. The results shown that the EUR is smallest in the vanishing limit of noise regardless of the forms of the initial sate we considered, while the coherence keeps the maximal value. During the time-evolution process, the uncertainty bound is lifted and the coherence damps monotonously. Subsequently, the EUR converges to an asymptotic nonzero constant in the long-time limit, yet the coherence asymptotically decays to zero. Moreover, the initial state purity plays a deterministic role in the initial amounts of EUR and coherence, i.e. the larger purity the less EUR and larger coherence. As an application, we employ the EUR to witness the coherence, and prove that the corresponding witnessing efficiencies are only depended on the version of coherence, while are insensitive to the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heisenberg, W.: Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  4. Robertson, H.: P. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  5. Schrödinger, E. in Proceedings of the Prussian Academy of Sciences, Physics-Mathematical Section XIX, 296 (1930)

  6. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Nat. Phys. 7, 757 (2011)

    Article  Google Scholar 

  7. Deutsch, D.: Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hu, M.L., Fan, H.: Phys. Rev. A. 88, 014105 (2013)

    Article  ADS  Google Scholar 

  9. Hu, M.L., Fan, H.: Phys. Rev. A. 87, 022314 (2013)

    Article  ADS  Google Scholar 

  10. Hu, M.L., Fan, H.: Phys. Rev. A. 86, 032338 (2012)

    Article  ADS  Google Scholar 

  11. Kraus, K.: Phys. Rev. D. 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. Maassen, H., Uffink, J.: B. M. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  Google Scholar 

  13. Renes, J.M., Boileau, J.C.: Phys. Rev. A. 78, 032335 (2008)

    Article  ADS  Google Scholar 

  14. Berta, M., Christandl, M., Colbeck, R., et al.: Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  15. Wild M. M. and Renes J. M.: in Proceeding of International Symposium on Information Theory (IEEE, Cambridge, Masschusetts), pp. 334–338 (2012)

  16. Shi, J.D., Ding, Z.Y., Wu, T., et al.: Laser Phys. Lett. 14, 125208 (2017)

    Article  ADS  Google Scholar 

  17. Huang A. J.,·Wang D., Wang, J. M. Quantum Inf. Process. 16, 204 (2017)

    Article  ADS  Google Scholar 

  18. Renes, J.M., Boileau, J.C.: Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  19. Ollivier, H., Zurek, W.: H. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  20. Henderson, L., Vedral, V.: J. Phys. A. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Phys. Rev. A. 87, 064101 (2013)

    Article  ADS  Google Scholar 

  22. Cerf, N.J., Adami, C.: Phys. Rev. Lett. 79, 5194 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  23. Devetak, I., Winter, A.: Proc. R. Soc. A. 461, 207 (2005)

    Article  ADS  Google Scholar 

  24. Baumgratz, T., Cramer, M., Plenio, M.: B. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  25. Hu, M.L., Hu, X.Y., Peng, Y., Zhang, Y.R., Fan, H.: Phys. Rep. 762-764, 1–100 (2018)

    Article  ADS  Google Scholar 

  26. Shi, J.D., Chen, J.J., He, J., Wu, T., Ye, L.: Quantum Inf. Process. 18, 300 (2019)

    Article  ADS  Google Scholar 

  27. Man, Z.X., Xia, Y.J., An, N.B.J.: Phys. B. 44, 095504 (2011)

    Article  Google Scholar 

  28. Wu, T., Shi, J.D., Yu, L., et al.: Sci. Rep. 7, 8625 (2017)

    Article  ADS  Google Scholar 

  29. Bellomo, B., Franco, R.L., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  30. Bellomo, B., Franco, R.L., Compagno, G.: Phys. Rev. A. 77, 032342 (2008)

    Article  ADS  Google Scholar 

  31. Shi, J.D., Wang, D., Ye, L.: Quantum Inf. Process. 15, 1649–1659 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Peters, N.A., Wei, T.C., Kwiat, P.G.: Phys. Rev. A. 70, 052309 (2004)

    Article  ADS  Google Scholar 

  33. Horodecki, M., Horodecki, P., Oppenheim, J.: Phys. Rev. A. 67, 062104 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Singh, U., et al.: Phys. Rev. A. 91, 052115 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No. 11847020, the candidates of Hefei university academic leader Grant No. 2016dtr02, the Fostering Master’s Degree Empowerment Point Project of Hefei University Grant No. 2018xs03, the Anhui Provincial Natural Science Foundation under Grant Nos. 1908085QA41 and 1908085MA24, the Open Foundation for CAS Key Laboratory of Quantum Information under Grant No. KQI201804, the Research Center for Quantum Information Technology of Fuyang Normal University under Grant No. kytd201706, the horizontal cooperation project of the people’s Government of Fuyang City-Fuyang Normal University under Grant No. XDHX201708, and also by the Doctoral Foundation of Fuyang Normal University under Grant No. 2017kyqd0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we revisit the physical model with the interaction of single qubit+reservoir system and the global evolution of composite system. The physical model is that the single qubit is locally interacted with a multimode reservoir, and the corresponding Hamiltonian is ( = 1) [27, 28].

$$ {H}_{Xx}={\omega}_0{\sigma}_{+}^X{\sigma}_{-}^X+\sum \limits_j{\omega}_j{x}_j^{\dagger }{x}_j+\sum \limits_j\left({g}_j{\sigma}_{+}^X{x}_j+{g}_j^{\ast }{\sigma}_{-}^X{x}_j^{\dagger}\right), $$
(6)

where gj is coupling constant between the qubit and reservoir mode j, x(x) is the creation (annihilation) operator of the reservoir with frequency ωj, \( {\sigma}_{+}^X=\left|1\right\rangle \left\langle 0\right| \) and \( {\sigma}_{-}^X=\left|0\right\rangle \left\langle 1\right| \) are the qubit rising operator and lowering operator acting on the Xth qubit with transition frequency ω0 in the orthogonal computational basis {|0〉, |1〉}. The evolution of single qubit+reservoir subsystem depends on the choice of Lorentzian spectral density of the reservoir. To do it, the Lorentzian spectral distribution we taken is of the following form

$$ J\left(\omega \right)=\frac{R^2}{\pi}\frac{\varGamma }{{\left(\omega -{\omega}_c\right)}^2+{\varGamma}^2}. $$
(7)

The parameter R is connected to the qubit+cavity coupling strength and Γ denotes the half-width at half-maximum of the intracavity field spectrum profile. Moreover, their relative magnitudes determine the Markovian (Γ > 2R) and the non-Markovian (Γ < 2R) regimes, respectively.

In terms of the reservoir Hamiltonian (6) and Lorentzian spectral distribution (7), the interaction of single qubit+reservoir can be computationally formulated, which are

$$ {\left|0\right\rangle}_X{\left|\overline{0}\right\rangle}_x\to {\left|0\right\rangle}_X{\left|\overline{0}\right\rangle}_x, $$
(8)
$$ {\left|1\right\rangle}_X{\left|\overline{0}\right\rangle}_x\to \xi (t){\left|1\right\rangle}_X{\left|\overline{0}\right\rangle}_x+\sqrt{1-\xi {(t)}^2}{\left|0\right\rangle}_X{\left|\overline{1}\right\rangle}_x, $$
(9)

where \( \xi (t)={e}^{-\varGamma t/2}\left[\cosh \left(\frac{dt}{2}\right)+\frac{\varGamma }{d}\sinh \left(\frac{dt}{2}\right)\right] \) with \( d=\sqrt{\varGamma^2-4{R}^2} \). Here, we point out that form the independent qubit+reservoir system the analytical solutions of quantum states can be derived for arbitrary initial states.

When qubits A and B are initially prepared in the EWL state and reservoirs a and b are initially in the vacuum states \( {\left|\overline{0}\overline{0}\right\rangle}_{ab} \), the initial density matrix of the total qubit+reservoir system thus reads

$$ {\rho}_{AB ab}(0)={\rho}_{AB}(0)\otimes {\left|\overline{0}\overline{0}\right\rangle}_{ab}\left\langle \overline{0}\overline{0}\right|, $$
(10)

which will evolve to

$$ {\rho}_{ABab}(t)=\frac{1-p}{16}{I}_{ABab}+p{\left|\phi (t)\right\rangle}_{ABab}\left\langle \phi (t)\right|, $$
(11)

with

$$ {\displaystyle \begin{array}{l}{\left|\phi (t)\right\rangle}_{ABab}=\alpha \left|00\overline{0}\overline{0}\right\rangle +\beta \left[{\left|{\xi}_0(t)\right|}^2\left|11\overline{0}\overline{0}\right\rangle +\left|{\xi}_0(t)\right|\left|{\xi}_1(t)\right|\left|10\overline{0}\overline{1}\right\rangle \right]\\ {}\kern3.75em +\beta \left[\left|{\xi}_0(t)\right|\left|{\xi}_1(t)\right|\left|01\overline{1}\overline{0}\right\rangle \left|11\overline{0}\overline{0}\right\rangle +{\left|{\xi}_1(t)\right|}^2\left|00\overline{1}\overline{1}\right\rangle \right]\end{array}} $$
(12)

where ξ0(t) = ξ(t) and \( {\xi}_1(t)=\sqrt{1-\xi {(t)}^2} \). By tracing over the reservoir freedom, we can obtain the reduced density matrix for the qubit subsystem ρAB(t), yielding

$$ {\displaystyle \begin{array}{l}{\rho}_{AB}(t)=\frac{1-p}{4}{I}_{AB}+p\left({\alpha}^2+{\beta}^2{\left|{\xi}_1(t)\right|}^4\right)\left|00\right\rangle \left\langle 00\right|\\ {}\kern2.5em +p{\beta}^2{\left|{\xi}_0(t)\right|}^2{\left|{\xi}_1(t)\right|}^2\left(\left|01\right\rangle \left\langle 01\right|+\left|10\right\rangle \left\langle 10\right|\right)\\ {}\kern2.5em +p{\beta}^2{\left|{\xi}_0(t)\right|}^4\left|11\right\rangle \left\langle 11\right|+ p\alpha \beta {\left|{\xi}_0(t)\right|}^2\left(\left|00\right\rangle \left\langle 11\right|+\left|11\right\rangle \left\langle 00\right|\right)\end{array}} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, BL., Shi, J. & Wu, T. Quantum-Memory-Assisted Entropic Uncertainty Relation and Quantum Coherence in Structured Reservoir. Int J Theor Phys 59, 763–771 (2020). https://doi.org/10.1007/s10773-019-04363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04363-6

Keywords

Navigation