Skip to main content
Log in

The Study of Security During Quantum Dense Coding in High-Dimensions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Here we analyze the security of quantum dense coding protocol in which the keys are encoded on d-dimensional Hilbert space. The incoherent attack is considered during the qubits transmission through practical quantum channels. To show the performance of the protocol, the mutual information is numerically calculated under the potential eavesdropping behavior by applying a cloning-based individual attack, along with an upper bound on the error rate that ensures unconditional security against incoherent attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys.Rev.Lett 84, 4729 (2000)

    Article  ADS  Google Scholar 

  2. Bouwmeester, D., Pan, J. -W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  5. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y. B.: Three-step three-party quantum secure direct communication. Science China Physics, Mechanics & Astronomy 61(9), 90312 (2018)

    Article  ADS  Google Scholar 

  6. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Science China Physics, Mechanics & Astronomy 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  7. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Science Bulletin 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Teleportation and dense coding via a multiparticle quantum channel of the GHZ-class. Quantum Information & Computation 2, 367 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Shimizu, K., Imoto, N., Mukai, T.: Dense coding in photonic quantum communication with enhanced information capacity. Phys. Rev. A 59(2), 1092 (1999)

    Article  ADS  Google Scholar 

  11. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  12. Hao, J.C., Li, C.-F., Guo, G.-C.: Controlled dense coding using the Greenberger-Horne-Zeilinger state. Phys. Rev. A 63(5), 054301 (2001)

    Article  ADS  Google Scholar 

  13. Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. In: Quantum Information with Continuous Variables, pp 95–103. Springer, Berlin (2000)

  14. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  15. Das, T., Prabhu, R., Sen(De), A., Sen, U.: Distributed quantum dense coding with two receivers in noisy environments. Phys. Rev. A 92, 052330 (2015)

    Article  ADS  Google Scholar 

  16. Li, X. -H., Ghose, S.: Hyperentangled bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)

    Article  ADS  Google Scholar 

  17. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  18. Gao, F., Wen, Q. -Y., Zhu, F. -C.: Teleportation attack on the qsdc protocol with a random basis and order. Chinese Physics B 17(9), 3189 (2008)

    Article  ADS  Google Scholar 

  19. Schauer, S., Suda, M.: A novel attack strategy on entanglement swapping qkd protocols. International Journal of Quantum Information 6(04), 841–858 (2008)

    Article  Google Scholar 

  20. Gao, F., Qin, S.J., Guo, F., Wen, Q. -Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE Journal of Quantum Electronics 47(5), 630–635 (2011)

    Article  ADS  Google Scholar 

  21. Gao, F., Guo, F., Wen, Q. -Y., Zhu, F. -C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Science in China Series G: Physics Mechanics and Astronomy 51(5), 559–566 (2008)

    Article  ADS  Google Scholar 

  22. Mohamed Halip, N.H., Mokhtar, M., Buhari, A.: Simulation of bennet and brassard 84 Protocol with Eve’s attacks. In: 2014 IEEE 5th International Conference on Photonics (ICP), pp. 29–31 (2014)

  23. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863 (1995)

    Article  ADS  Google Scholar 

  24. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  ADS  Google Scholar 

  25. Guo, Q., Zhai, S., Cheng, L. -Y., Wang, H. -F., Zhang, S.: Counterfactual quantum cloning without transmitting any physical particles. Phys. Rev. A 96, 052335 (2017)

    Article  ADS  Google Scholar 

  26. Rui, P., Zhang, W., Liao, Y., Zhang, Z.: Economical phase-covariant quantum telecloning of a single polarization photon via quantum nondemolition detection. The European Physical Journal D 71(5), 107 (2017)

    Article  ADS  Google Scholar 

  27. Bartkiewicz, K., Lemr, K., Černoch, A., Soubusta, J., Miranowicz, A.: Experimental eavesdropping based on optimal quantum cloning. Phys. Rev Lett. 110, 173601 (2013)

    Article  ADS  Google Scholar 

  28. Bartkiewicz, K., Černoch, A., Lemr, K., Soubusta, J., Stobiń, ska, M.: Efficient amplification of photonic qubits by optimal quantum cloning. Phys. Rev A 89, 062322 (2014)

  29. Cerf, N.J.: Acta Phys. Slov. 48, 115 (1998)

    MathSciNet  Google Scholar 

  30. Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett 84(19), 4497 (2000)

    Article  ADS  Google Scholar 

  31. Cerf, N.J.: J. Mod. Opt. 47, 187 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China through Grants No. 61622103, 61671083 and No.61701035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Cao, C., Wang, TJ. et al. The Study of Security During Quantum Dense Coding in High-Dimensions. Int J Theor Phys 59, 1957–1965 (2020). https://doi.org/10.1007/s10773-019-04334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04334-x

Keywords

Navigation