Skip to main content
Log in

Improving Continuous-Variable Quantum Key Distribution in a Turbulent Atmospheric Channel via Photon Subtraction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The transmission performance of continuous-variable quantum key distribution (CVQKD) in turbulent atmospheric channel is lower than CVQKD in fiber channel due to the large loss of quantum entanglement in turbulent atmospheric channel. In this paper, we propose a new approach to prolong the transmission performance of CVQKD in a turbulent atmospheric channel by using photon subtraction operation since the proposed approach can effectively enhance the entangled state between quantum. Simulation analysis shows that photon subtraction operation can effectively improve the security key rate of continuous-variable quantum key distribution, and the optimal performance can be achieved when only one photon is subtracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  2. Bang, J.Y., Berger, M.S.: Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 74(12), 125012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  5. Gabay, M., Arnon, S.: Quantum key distribution by a free-space mimo system. J. Lightwave Tech. 24(8), 3114–3120 (2006)

    Article  ADS  Google Scholar 

  6. Djordjevi, I.B.: Integrated optics modules based proposal for quantum information processing, teleportation, qkd, and quantum error correction employing photon angular momentum. IEEE Photonics J. 8(1), 1–12 (2016)

    Article  Google Scholar 

  7. Xiao, H., Zhang, Z.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states. Quantum Inf. Process. 16(1), 13 (2017)

    Article  ADS  Google Scholar 

  8. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3(7), 481 (2007)

    Article  Google Scholar 

  9. Buttler, W.T., Hughes, R.J., Lamoreaux, S.K., Morgan, G.L., Nordholt, J.E., Peterson, C.G.: Daylight quantum key distribution over 1.6 km. Phys. Rev. Lett. 84(24), 5652 (2000)

    Article  ADS  Google Scholar 

  10. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4(1), 43 (2002)

    Article  ADS  Google Scholar 

  11. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  12. Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., Tiefenbacher, F., Jennewein, T., Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5(6), 389 (2009)

    Article  Google Scholar 

  13. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature (London) 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  14. Nauerth, S., Moll, F., Rau, M., Fuchs, C., Horwath, J., Frick, S., Weinfurter, H.: Air-to-ground quantum communication. Nat. Photonics 7(5), 382 (2013)

    Article  ADS  Google Scholar 

  15. Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4(1), 82 (2002)

    Article  ADS  Google Scholar 

  16. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W.R., Zeilinger, A.: Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Quantum Electron. 9(6), 1541–1551 (2003)

    Article  ADS  Google Scholar 

  17. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursi, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys. 10(3), 033038 (2008)

    Article  ADS  Google Scholar 

  18. Armengol, J.M.P., Furch, B., de Matos, C.J., Minster, O., Cacciapuoti, L., Pfennigbauer, M., Aspelmeyer, M., Jennewein, T., Ursin, R., Schmitt-Manderbach, T., Baister, G.: Quantum communications at esa: towards a space experiment on the iss. Acta Astronaut. 63(1-4), 165–178 (2008)

    Article  ADS  Google Scholar 

  19. Bonato, C., Tomaello, A., Da Deppo, V., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New J. Phys. 11(4), 045017 (2009)

    Article  ADS  Google Scholar 

  20. Meyer-Scott, E., Yan, Z., MacDonald, A., Bourgoin, J.P., Hübel, H., Jennewein, T.: How to implement decoy-state quantum key distribution for a satellite uplink with 50-db channel loss. Phys. Rev. A 84(6), 062326 (2011)

    Article  ADS  Google Scholar 

  21. Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 80(2), 021802 (2009)

    Article  ADS  Google Scholar 

  22. Erven, C., Heim, B., Meyer-Scott, E., Bourgoin, J.P., Laflamme, R., Weihs, G., Jennewein, T.: Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 14(12), 123018 (2012)

    Article  ADS  Google Scholar 

  23. Capraro, I., Tomaello, A., Dall’Arche, A., Gerlin, F., Ursin, R., Vallone, G., Villoresi, P.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett 109(20), 200502 (2012)

    Article  ADS  Google Scholar 

  24. Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)

    Article  ADS  Google Scholar 

  25. Y. Guo, Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution . Phys. Rev. A 97(5), 052326 (2018)

    Article  ADS  Google Scholar 

  26. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  27. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  28. Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted gaussian field. Phys. Rev. A 71(4), 043805 (2005)

    Article  ADS  Google Scholar 

  29. Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73(4), 042310 (2006)

    Article  ADS  Google Scholar 

  30. Navarrete-Benlloch, C., García-Patrón, R., Raúl, Shapiro, J.H., Cerf, Nicolas, J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86(1), 012328 (2012)

    Article  ADS  Google Scholar 

  31. Opatrnỳ, T., Kurizki, G., Welsch, D.G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61(3), 032302 (2000)

    Article  ADS  Google Scholar 

  32. Zunino, L., Gulich, D., Funes, G., Pérez, D.G.: Turbulence-induced persistence in laser beam wandering. Opt. Lett. 40(13), 3145–3148 (2015)

    Article  ADS  Google Scholar 

  33. Berman, G.P., Chumak, A.A., Gorshkov, V.N.: Beam wandering in the atmosphere: the effect of partial coherence. Phys. Rev. E 76(5), 056606 (2007)

    Article  ADS  Google Scholar 

  34. Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)

    Article  ADS  Google Scholar 

  35. Franzen, A., Hage, B., DiGuglielmo, J., Fiurasek, J., Schnabel, R.: Experimental demonstration of continuous variable purification of squeezed states. Phys. Rev. Lett. 97(15), 150505 (2006)

    Article  ADS  Google Scholar 

  36. Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. In: Quantum Information with Continuous Variables, vol. 63, pp. 022309. Springer (2001)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61871407, 61872390, 61801522), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Liao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Two-Mode Squeezed State

Recently, researchers have proposed CVQKD protocol for preparing entangled states [34,35,36]. The most widely used are the Gauss quantum continuous variable prepared for the single-mode vacuum squeezed state or the two-mode vacuum squeezed state. The correlation matrix in the single-mode vacuum compression state can be expressed as

$$ {\gamma} =\left( \begin{array}{ll} e^{-2r} & 0 \\0 & e^{2r} \end{array}\right), $$
(20)

where the average value of the state are zero, and the r is squeezing factor. When r > 0, it means that the x is squeezed, otherwise p is squeezed. In this paper, we consider the two-mode vacuum squeezed state based on the Einstein-Podolsky-Rosen (EPR) states. Finally we have the covariance matrix of the state given by

$$ {\gamma}_{EPR} =\left( \begin{array}{ll} \cosh2r\mathbb{I} & \sinh2r\mathbb{Z} \\ \sinh2r\mathbb{Z} & \cosh2r\mathbb{I} \end{array}\right), $$
(21)

where \(\mathbb {I}\) and \(\mathbb {Z}\) correspond to matrix diag(1,1) and matrix diag(1,− 1), respectively. We take \(\gamma _{AB_{0}}\) to describe the combination of two rotated squeezed vacuum states(EPR state) on a balanced beam splitter. Consequently, \(\gamma _{AB_{0}}\) can be calculated as

$$ {\gamma}_{AB_{0}}=\left( \begin{array}{ll} V\mathbb{I} & \sqrt{V^{2}-1}\mathbb{Z} \\ \sqrt{V^{2}-1}\mathbb{Z} & V\mathbb{I} \end{array}\right), $$
(22)

where \(V =\left (V_{A}+V_{S} \right )/2\) is Alice’s modulation variance, VA is for the antisqueezed state and VS is for the squeezed state. Therefore, we have the symbols

$$ X=V, Y=V, Z=\sqrt{V^{2}-1}. $$
(23)

In this scheme, Alice applies two squeezers on the balanced beam splitter to produce a quantum two-mode squeezed state. Then she performs measurements on one mode of them and sends the other mode to Bob. Alice and Bob transmit measurement parameters over the classic channel and establish the secret key after using privacy amplification.

Appendix B: Heterodyne and Homodyne Detection

In homodyne detection case, Bob performs a homodyne detection on the received information, the mutual information \(I_{AB}^{Hom}\) (I(A:B) is expressed as \(I_{(A:B)}^{Hom}\)) between Alice and Bob can be evaluated as

$$ \begin{array}{@{}rcl@{}} I_{(A:B)}^{Hom}&=& \frac{1}{2}log\frac{V_{A}+1}{V_{(A|B)}^{Hom}+1}\\ &=&\frac{1}{2}log\left (\frac{a+1}{a-\frac{c^{2}}{b}+1} \right ). \end{array} $$
(24)

In addition, \(S_{(A|B)}^{Hom}\) (S(A|B) is expressed as \(S_{(A|B)}^{Hom}\)) can be calculated as \(S_{(A|B)}^{Hom}=G\left (\frac {\lambda _{3}-1}{2} \right ) \), where the simplistic eigenvalues \({\lambda _{3}^{2}}(Hom) = a(a-\frac {c^{2}}{b})\). When Bob uses the homodyne detection, the resulting secret key rate is finally expressed as

$$ K^{Hom}=P_{\left (k \right )}^{\widehat{\varPi}_{1}}\left \{\beta I_{(A:B)}^{Hom}-[S_{(AB)}-S_{(A|B)}^{Hom}] \right \}. $$
(25)

In heterodyne detection case, when Bob performs a heterodyne detection on the received information, the mutual information \(I_{AB}^{Het}\) (I(A:B) is expressed as \(I_{(A:B)}^{Het}\)) between Alice and Bob can be evaluated as

$$ \begin{array}{@{}rcl@{}} I_{A:B}^{Het}&=&log\frac{V_{B}+1}{V_{B|A}^{Het}+1}\\ &=&log\left (\frac{b+1}{\left( b-\frac{c^{2}}{a+1}\right)+1} \right ). \end{array} $$
(26)

Subsequently, \(S_{(A|B)}^{Het}\) (S(A|B) is expressed as \(S_{(A|B)}^{Het}\)) can be calculated as

$$ S_{(A|B)}^{Het}=G\left (\frac{\lambda_{3}-1}{2} \right ), $$
(27)

where the simplistic eigenvalues are given by

$$ \lambda_{3}(Het)=a-\frac{c^{2}}{b+1}. $$
(28)

When Bob applies the heterodyne detection, the resulting secret key rate is expressed as

$$ K^{Het}=P_{\left (k \right )}^{\widehat{\varPi }_{1}}\left \{\beta I_{(A:B)}^{Het}-\left[S_{(AB)}-S_{(A|B)}^{Het}\right] \right \}. $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Liao, Q. & Guo, Y. Improving Continuous-Variable Quantum Key Distribution in a Turbulent Atmospheric Channel via Photon Subtraction. Int J Theor Phys 59, 338–349 (2020). https://doi.org/10.1007/s10773-019-04327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04327-w

Keywords

Navigation