Skip to main content
Log in

Classification of Classical Non-Gaussian Noises with Respect to Their Detrimental Effects on the Evolution of Entanglement Using a System of Three-Qubit as Probe

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A system of three non-interacting qubits is used as a quantum probe to classify three classical non-Gaussian noises namely, the static noise (SN), colored noise (pink and brown spectrum) and random telegraph noise (RTN), according to their detrimental effects on the evolution of entanglement of the latter. The probe system is initially prepared in the GHZ state and coupled to the noises in independent environments. Seven configurations for the qubit-noise coupling (QNC) are considered. To estimate the destructive influence of each kind of noise, the tripartite negativity is employed to compare the evolution of entanglement in these QNC configurations to each other with the same noise parameters. It is shown that the evolution of entanglement is drastically impacted by the QNC configuration considered as well as the properties of the environmental noises and that the SN is more detrimental to the survival of entanglement than the RTN and colored noise, regardless of the Markov or non-Markov character of the RTN and the spectrum of the colored noise. On the other hand, it is shown that pink noise is more fatal to the system than the RTN and that the situation is totally reversed in the case of brown noise. Finally, it is demonstrated that these noises, in descending order of destructive influence, can be classified as follows: SN > pink noise > RTN > brown noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schroedinger: . Die Naturwissenschaften 23, 807–8012 (1935)

    ADS  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  3. Ekert, A.K.: . Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  4. Gisin, N., et al.: . Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  5. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, England (2000)

    MATH  Google Scholar 

  6. Bennett, C.H.: . Phys. Rev. Lett. 68, 3121 (1992)

    ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: . Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  8. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: . Phys. Rev. A 80, 062324 (2009)

    ADS  Google Scholar 

  9. Paz, J.P., Roncaglia, A.J.: . Phys. Rev. Lett. 100, 220401 (2008)

    ADS  Google Scholar 

  10. Helm, J., Strunz, W.T.: . Phys. Rev. A 80, 042108 (2009)

    ADS  Google Scholar 

  11. Helm, J., Strunz, W.T., Rietzler, S., Wuringer, L.E.: . Phys. Rev. A 83, 042103 (2011)

    ADS  Google Scholar 

  12. Witzel, W.M., Young, K., Sarma, S.D.: . Phys. Rev. B 90, 115431 (2014)

    ADS  Google Scholar 

  13. Strunz, W.T., Diosi, L., Gisin, N.: . Phys. Rev. Lett. 82, 1801 (1999)

    ADS  MathSciNet  Google Scholar 

  14. Stockburger, J.T., Grabert, H.: . Phys. Rev. Lett. 88, 170407 (2002)

    ADS  Google Scholar 

  15. Crow, D., Joynt, R.: . Phys. Rev. A 89, 042123 (2014)

    ADS  Google Scholar 

  16. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Phys. Rev. A 87, 052328 (2013)

    ADS  Google Scholar 

  17. Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to 1/f α noise. Proc. 22nd Int. Conf. Noise Fluct. (ICNF) 323, 6578952 (2013). https://doi.org/10.1109/ICNF

    Google Scholar 

  18. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Int. J. Quant. Inf. 10, 1241005 (2012)

    Google Scholar 

  19. Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: . Int. J. Quantum Inf. 12, 1560003 (2014)

    MathSciNet  Google Scholar 

  20. Buscemi, F., Bordone, P.: . Phys. Rev. A 87, 042310 (2013)

    ADS  Google Scholar 

  21. Kenfack, L.T., Tchoffo, M., Jipdi, M.N., Fuoukeng, J.C., Fai, L.C.: . J. Phys. Commun. 2, 055011 (2018)

    Google Scholar 

  22. Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: . Int. J. Quant. Inf. 15, 1750038 (2017)

    Google Scholar 

  23. Kenfack, L.T., Tchoffo, L.C., Fai, L.C.: . Eur. Phys. J. Plus. 132, 91 (2017)

    Google Scholar 

  24. Kenfack, L.T., Tchoffo, L.C., Fouokeng, G.C., Fai, L.C.: . Physica B 511, 123 (2017)

    ADS  Google Scholar 

  25. Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: . Eur. Phys. J. Plus. 131, 380 (2016)

    Google Scholar 

  26. Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: . Int. J. Mod. Phys. B 30, 1750046 (2016)

    Google Scholar 

  27. Zhou, D., Lang, A., Joynt, R.: . Quantum Inf. Process. 9, 727 (2010)

    MathSciNet  Google Scholar 

  28. De, A., Lang, A., Zhou, D., Joynt, R.: . Phys. Rev. A 83, 042331 (2011)

    ADS  Google Scholar 

  29. Leggio, B., Franco, R.L., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: . Phys. Rev. A 92, 032311 (2015)

    ADS  Google Scholar 

  30. D’Arrigo, A., Benenti, G., Franco, R.L., Falci, G., Paladino, E.: . Int. J. Quant. Inf. 12, 1461005 (2014)

    Google Scholar 

  31. Kenfack, L.T., Tchoffo, M., Fai, L.C.: . Phys. Lett. A 382, 2818 (2018)

    Google Scholar 

  32. Kenfack, L.T., Tchoffo, G.C., Fouokeng, G.C., Fai, L.C.: . Quantum Inf. Process. 17, 76 (2018)

    ADS  Google Scholar 

  33. Xu, J. -S., Sun, K., Li, C. -F., et al.: . Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  34. Orieux, A., D’Arrigo, A., Ferranti, G., Franco, R.L., et al.: . Sci. Rep. 5, 8575 (2015)

    Google Scholar 

  35. Thompson, C., Vemuri, G., Agarwal, G.S.: . Phys. Rev. A 82, 053805 (2010)

    ADS  Google Scholar 

  36. Bordone, P., Buscemi, F., Benedetti, C.: . Fluct. Noise Lett. 11, 1242003 (2012)

    Google Scholar 

  37. Sabin, C., Garcia-Alcaine, G.: . Eur. Phys. J. D 48, 435 (2008)

    ADS  MathSciNet  Google Scholar 

  38. Vidal, G., Werner, R.F.: . Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  39. Bergli, J., Galperin, Y.M., Altshuler, B.L.: . J. Phys. 11, 025002 (2009)

    Google Scholar 

  40. Paladino, E., Faoro, L., Falci, G., Fazio, R.: . Phys. Rev. Lett. 88, 228304 (2002)

    ADS  Google Scholar 

  41. Falci, G., D’Arrigo, A., Mastellone, A., Paladino, E.: . ibid. 94, 167002 (2005)

    Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Tenemeza Kenfack.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack, L.T., Tchoffo, M. & Fai, L.C. Classification of Classical Non-Gaussian Noises with Respect to Their Detrimental Effects on the Evolution of Entanglement Using a System of Three-Qubit as Probe. Int J Theor Phys 58, 4278–4292 (2019). https://doi.org/10.1007/s10773-019-04300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04300-7

Keywords

Navigation