Skip to main content
Log in

Entanglement of Semi-Bell States in Non-Inertial Frames

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Semi-Bell states are exploited for storing and sending information in non-inertial frames. In this paper, we consider four types of semi-bell states, \(|{\varPhi }_{\alpha }^{\pm }\rangle =\alpha |0\rangle |0\rangle \pm \sqrt {1-\alpha ^{2}}|1\rangle |1\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle =\alpha |0\rangle |1\rangle \pm \sqrt {1-\alpha ^{2}}|1\rangle |0\rangle \), and study entanglements and other quantum correlations of these states from the viewpoint of an accelerated and an inertial observers by computing such measures as negativity, quantum coherence, and purity of these states. As expected, these measures degrade for semi-bell states with increasing acceleration. The states, however, exhibit different types of degradation depending on the statistics of the particles. Entanglement, coherence, and purity of bosonic states degrade more rapidly than do states with fermionic statistics. A duality exists in the measures of the two types of semi-bell states and for the maximally entangled states (\(\alpha =\frac {1}{\sqrt {2}}\)), there is no difference between the measures of \(|{\varPhi }_{\alpha }^{\pm }\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle \). In the fermionic case, differences of the measures between the \(|{\varPhi }_{\alpha }^{\pm }\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle \) states are greater for large values of acceleration, while in the bosonic case, their subtractions are larger for small values of acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen, J., Grogan, S. h., Johnston, N., Li, C. h., Plosker, S.: Quantifying the coherence of pure quantum states. Phys. Rev. A 94, 042313 (2016)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  6. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  7. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  8. Schroedinger, E.: The present status of quantum mechanics. Naturwissenschaften 23, 823807 (1935)

    Google Scholar 

  9. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. Veitch, V., Mousavian, S.A.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation, vol. 16 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, Y.R., Shao, L.H., Li, Y., Fan, H.: Quantifying Coherence in Infinite Dimensional Systems, arXiv:1505.05270 [quant-ph]

  13. Girolami, D., Yadin, B.: Witnessing multipartite entanglement by detecting coherence. Phys. Rev. Lett. 115, 020403 (2015)

    Article  MathSciNet  Google Scholar 

  14. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  15. Chen, X., Wu, C., Su, H.Y., Ren, C.L., Chen, J.L.: Bipartite quantum coherence in noninertial frames, arXiv:1601.02741[quant-ph]

  16. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  17. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  18. Chitambar, E., Hsieh, M.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  19. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  20. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mohammadzadeh, H., Ebadi, Z., Mehri-Dehnavi, H., Mirza, B., Rahimi Darabad, R.: Entanglement of arbitrary spin modes in expanding universe. Quantum Inf. Process. 14, 4787 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pierini, R., Moradi, S., Mancini, S.: Spacetime anisotropy affects cosmological entanglement. Nuclear Phys. B 924, 684 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pierini, R., Moradi, S., Mancini, S.: Entanglement in anisotropic expanding spacetime. Eur. Phys. J. D 73, 3 (2019)

    Article  ADS  Google Scholar 

  24. Alsing, P.M., Milburn, G.J.: . Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  25. Alsing, P.M., Milburn, G.J.: . Quant. Inf. Comp. 2, 487 (2002)

    Google Scholar 

  26. Czachor, M., Wilczewski, M.: . Phys. Rev. A 68, 010302 (2003)

    Article  ADS  Google Scholar 

  27. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in non-inertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  28. Unruh, W.G., Wald, R.M.: . Phys. Rev. D 29, 1047 (1984)

    Article  ADS  Google Scholar 

  29. Richter, B., Omar, Y.: . Phys. Rev. A 92, 022334 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-Entanglement Evaluated in noninertial frames. Ann. Phys. 326, 1320–1333 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mehri-Dehnavi, H., Rahimi, R., Mohammadzadeh, H., Ebadi, Z., Mirza, B.: Quantum teleportation with nonclassical correlated states in noninertial frames. Quantum Inf. Process. 14, 1025 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Alsing, P.M., Fuentes, I.: Observer dependent entanglement. Class Quantum Grav 29 224001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity, Benjamin Cummings Publishers (2003)

  34. Lindblad, G.: Completely Positive Maps and Entropy Inequalities. Commun. Math. Phys. 40, 147 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ruskai, M.B.: Inequalities for Quantum Entropy: A Review with Conditions for Equality. J. Math. Phys. 43, 4358 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. Bruss, D.: . J. Math. Phys. 43, 4237 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. Vidal, G., Werner, R.F.: . Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  38. Barnett, S.M.: Quantum information. Oxford University Press, Oxford (2009)

  39. Peres, A.: Quantum theory: concepts and methods. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  40. Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  41. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge (2000)

  43. Bruschi, D.E., Louko, J., Martin-Martinez, E., Dragan, A., Fuentes, I.: The Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leili Esmaeilifar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilifar, L., Harsij, Z. & Mirza, B. Entanglement of Semi-Bell States in Non-Inertial Frames. Int J Theor Phys 58, 4152–4169 (2019). https://doi.org/10.1007/s10773-019-04281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04281-7

Keywords

Navigation