Skip to main content
Log in

N-partite Entanglement Measures of GHZ States in a Non-inertial Frame

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Entanglement measures of GHZ states in a non-inertial frame are analyzed. The form of the GHZ states of n entangled qubits where q of them are non-inertial observers is studied. Some generalities of the entanglement measures of GHZ states are derived. The entanglement measures depend on a parameter \(r\in [0,\pi /4]\) associated with the acceleration \(a\in [0,\infty ]\) and on the number of non-inertial observers. It was observed that the negativity \(N_{1-(n-1)}\) is the same in GHZ states with the same number of non-inertial observers as long as there is at least one inertial qubit in the \((n-1)\) modes. The whole residual entanglement of GHZ states with q non-inertial observers can be increased up to \(\cos ^{2q}(r)\) by increasing the number of inertial entangled qubits in it, i.e. \(n\rightarrow \infty \). It is observed that \(\cos ^{2q}(r)\) is a good approximation of the whole residual entanglement for \(q \gg 1\). Using the latter, it is observed that at infinite acceleration any GHZ state with \(q \ge 4\) has an entanglement close to \(10\%\) of the fully inertial GHZ state, and with \(n \ge 7\), this is less than \(1\%\), which should be considered in quantum network protocols. Regarding the entropy, it was found that this is a function of a parameter r, and of the number q of accelerated observers, but not of the number of entangled qubits. Finally, a formula to calculate the entropy of GHZ states in a non-inertial frame also was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997). https://doi.org/10.1137/S0097539796300933

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, D., Ekert, a.K., Zeilinger, A.: The Physics of Quantum Information : Quantum Cryptography, Quantum Teleportation, Quantum Computation. Berlin ; London : Springer, 2011. (2011)

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, ??? (2010). United Kingdom

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002). https://doi.org/10.1103/revmodphys.74.145

    Article  ADS  MATH  Google Scholar 

  6. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003). https://doi.org/10.1103/PhysRevLett.91.180404

    Article  ADS  Google Scholar 

  7. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The unruh effect and its applications. Rev. Mod. Phys. 80(3), 787–838 (2008). https://doi.org/10.1103/revmodphys.80.787

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  9. Van Meter, R., Satoh, R., Benchasattabuse, N., Matsuo, T., Hajdušek, M., Satoh, T., Nagayama, S., Suzuki, S.: A Quantum Internet Architecture. arXiv (2021). 10.48550/ARXIV.2112.07092. https://arxiv.org/abs/2112.07092

  10. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997). https://doi.org/10.1103/PhysRevLett.79.325

    Article  ADS  Google Scholar 

  11. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). 10.1109/SFCS.1994.365700

  12. Augusiak, R., Horodecki, P.: Multipartite secret key distillation and bound entanglement. Phys. Rev. A 80, 042307 (2009). https://doi.org/10.1103/PhysRevA.80.042307

    Article  ADS  MathSciNet  Google Scholar 

  13. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012 (2020). https://doi.org/10.1364/aop.361502

    Article  ADS  Google Scholar 

  14. Wang, L., Zhou, Y.-Y., Zhou, X.-J., Chen, X., Zhang, Z.: Correction to: New scheme for measurement-device-independent quantum key distribution. Quantum Information Processing 18(1) (2018). https://doi.org/10.1007/s11128-018-2120-6

  15. Zhang, L., Jing, J., Fan, H., Wang, J.: Synchronize accelerated clock in a multipartite relativistic quantum system. Ann. Phys. (2018)

  16. Wang, J., Jing, J.: Erratum: Multipartite entanglement of fermionic systems in noninertial frames [phys. rev. a 83, 022314 (2011)]. Phys. Rev. A 97, 029902 (2018). 10.1103/PhysRevA.97.029902

  17. Hwang, M.-R., Jung, E., Park, D.: Three-tangle in non-inertial frame. Class. Quantum Grav. 29(22), 224004 (2012). 10.1088/0264-9381/29/22/224004

  18. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011). https://doi.org/10.1103/PhysRevA.83.052306

    Article  ADS  Google Scholar 

  19. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012). https://doi.org/10.1103/PhysRevD.86.025026

    Article  ADS  Google Scholar 

  20. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014). https://doi.org/10.1103/PhysRevA.89.042336

    Article  ADS  Google Scholar 

  21. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett. 95(12) (2005). 10.1103/physrevlett.95.120404

  22. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82(4) (2010). 10.1103/physreva.82.042332

  23. Szypulski, J.A., Grochowski, P.T., Debski, K., Dragan, A.: Effect of relativistic acceleration on tripartite entanglement in Gaussian states. arXiv (2021). 10.48550/ARXIV.2112.07250. https://arxiv.org/abs/2112.07250

  24. Debski, K., Dragan, A.: Multimode theory of gaussian states in uniformly accelerated frames. Phys. Rev. D 98, 025003 (2018). https://doi.org/10.1103/PhysRevD.98.025003

    Article  ADS  MathSciNet  Google Scholar 

  25. Dong, Q., de Jesus León-Montiel, R., Sun, G.-H., Dong, S.-H.: Entanglement property of tripartite ghz state in different accelerating observer frames. Entropy 24(8) (2022). 10.3390/e24081011

  26. Skoromnik, O.D., Feranchuk, I.D.: Justification of the single-mode approximation for a finite-duration laser pulse interacting with an electron. J. Phys. B 47(11), 115601 (2014). https://doi.org/10.1088/0953-4075/47/11/115601

    Article  ADS  Google Scholar 

  27. Asano, K., Ando, T.: Breakdown of single mode approximation in quantum hall cyclotron resonance. Solid-State Electron. 42(7), 1175–1177 (1998). https://doi.org/10.1016/S0038-1101(97)00324-9

    Article  ADS  Google Scholar 

  28. Lugiato, L.A., Narducci, L.M., Bandy, D.K., Tredicce, J.R.: Single-mode approximation in laser physics: A critique and a proposed improvement. Phys. Rev. A 33, 1109–1116 (1986). https://doi.org/10.1103/PhysRevA.33.1109

    Article  ADS  Google Scholar 

  29. Torres-Arenas, A.J., López-Zuñiga, E.O., Saldaña-Herrera, J.A., Dong, Q., Sun, G.H., Dong, S.H.: Tetrapartite entanglement measures of w-class in noninertial frames. Chin. Phys. B 28(070301), 1–10 (2019)

    Google Scholar 

  30. Dong, Q., Torres-Arenas, A., Sun, G., Dong, S.: Tetrapartite entanglement features of w-class state in uniform acceleration. Front. Phys. 15(1) (2020). 10.1007/s11467-019-0940-1. Publisher Copyright: © 2020, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature. Copyright: Copyright 2019 Elsevier B.V., All rights reserved

  31. Qiang, W.C., Dong, Q., A., M.-S.M., Sun, G.H., Dong, S.H.: Entanglement property of the werner state in accelerated frames. Quantum Inf. Process. 18(314), 1–20 (2019)

  32. Dong, Q., Sun, G., Toutounji, M., Dong, S.: Tetrapartite entanglement measures of ghz state with nonuniform acceleration. Optik 201 (2020). 10.1016/j.ijleo.2019.163487. Publisher Copyright: © 2019 Elsevier GmbH Copyright: Copyright 2019 Elsevier B.V., All rights reserved

  33. Ocampo, D., Ramírez, J., Yáñez-Márquez, C., Sun, G.: Entanglement measures of a pentapartite w-class state in the noninertial frame. Quantum Inf. Process. 21(2) (2022). 10.1007/s11128-021-03374-9. Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

  34. Dong, Q., de Jesus León-Montiel, R., Sun, G.-H., Dong, S.-H.: Entanglement property of tripartite GHZ state in different accelerating observer frames. Entropy 24(8), 1011 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. Manríquez Zepeda, J.L., Rueda Paz, J., Avila Aoki, M., Dong, S.-H.: Pentapartite entanglement measures of ghz and w-class state in the noninertial frame. Entropy 24(6) (2022). 10.3390/e24060754

  36. Harikrishnan, S., Jambulingam, S., Rohde, P.P., Radhakrishnan, C.: Accessible and inaccessible quantum coherence in relativistic quantum systems. Phys. Rev. A 105(5) (2022). 10.1103/physreva.105.052403

  37. Socolovsky, M.: Rindler Space and Unruh Effect. arXiv (2013). 10.48550/ARXIV.1304.2833. https://arxiv.org/abs/1304.2833

  38. Fuentes, I.: LECTURE SERIES ON RELATIVISTIC QUANTUM INFORMATION. In: Diversities in Quantum Computation and Quantum Information. WORLD SCIENTIFIC, ??? (2012)

  39. Martín-Martínez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a schwarzschild black hole. Phys. Rev. D 82(6) (2010). 10.1103/physrevd.82.064006

  40. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976). https://doi.org/10.1103/PhysRevD.14.870

    Article  ADS  Google Scholar 

  41. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006). 10.1103/PhysRevA.74.032326

  42. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK (1984). 10.1017/CBO9780511622632

  43. Dong, Q., Carrillo, R.S., Sun, G.-H., Dong, S.-H.: Tetrapartite entanglement measures of generalized ghz state in the noninertial frames. Chin. Phys. B 31(3), 030303 (2022). https://doi.org/10.1088/1674-1056/ac2299

    Article  ADS  Google Scholar 

  44. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011). https://doi.org/10.1103/PhysRevA.83.022314

    Article  ADS  Google Scholar 

  45. Alsing, P.M., Fuentes, I.: Observer-dependent entanglement. Class. Quantum Grav. 29(22), 224001 (2012). https://doi.org/10.1088/0264-9381/29/22/224001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. León, J., Martín-Martínez, E.: Spin and occupation number entanglement of dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009). https://doi.org/10.1103/PhysRevA.80.012314

    Article  ADS  Google Scholar 

  47. Case, W.B.: Wigner functions and weyl transforms for pedestrians. Am. J. Phys. 76(10), 937–946 (2008). https://doi.org/10.1119/1.2957889

    Article  ADS  Google Scholar 

  48. Abd-Rabbou, M.Y., Metwally, N., Ahmed, M.M.A., Obada, A.-S.F.: Wigner distribution of accelerated tripartitew-state. Optik 208, 163921 (2020). https://doi.org/10.1016/j.ijleo.2019.163921

    Article  ADS  Google Scholar 

  49. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phy. Lett. A 223(1), 1–8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    Article  ADS  Google Scholar 

  52. Li, Y., Liu, C., Wang, Q., Zhang, H., Hu, L.: Tetrapartite entanglement of fermionic systems in noninertial frames. Optik 127(20), 9788–9797 (2016). https://doi.org/10.1016/j.ijleo.2016.07.069

    Article  ADS  Google Scholar 

  53. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5) (2000). 10.1103/physreva.61.052306

  54. Oliveira, D.S., Ramos, R.V.: Residual entanglement with negativity for pure four-qubit quantum states. Quantum Inf. Process. 9, 497–508 (2010). https://doi.org/10.1007/s11128-009-0154-5

    Article  MathSciNet  MATH  Google Scholar 

  55. Kozlowski, W., Dahlberg, A., Wehner, S.: Designing a quantum network protocol. In: Proceedings of the 16th International Conference on Emerging Networking EXperiments and Technologies. ACM, ??? (2020). 10.1145/3386367.3431293. https://doi.org/10.1145/2F3386367.3431293

  56. Metwally, N.: Entanglement routers via a wireless quantum network based on arbitrary two qubit systems. Physica Scripta 89(12), 125103 (2014). https://doi.org/10.1088/0031-8949/89/12/125103

    Article  ADS  Google Scholar 

  57. Shannon, C.E.: A mathematical theory of communication. BSTJ 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  58. Cover, T., Thomas, J.: Elements of Information Theory. Wiley-Interscience, ??? (2006). EUA

  59. Manriquez-Zepeda, J.L., Rueda-Paz, J., Filio-Aguilar, P.D., López-García, L.: The entropy of systems. Rev. Mex. Fis. E 20(1 Jan-Jun) (2023). 10.31349/revmexfise.20.010211

  60. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, ??? (2017). United Kingdom

  61. Asensio, P.I.: Campos cuánticos en espaciotiempos curvos; efecto unruh, detectores de unruh-dewitt y el concepto de partícula. PhD thesis, Facultad de Ciencias Físicas Departamento de Física Teórica, Universidad Complutense de Madrid (2019)

  62. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. New York: Cambridge University Press, ??? (2006)

  63. Popescu, S., Rohrlich, D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, 3319–3321 (1997). https://doi.org/10.1103/PhysRevA.56.R3319

    Article  ADS  MathSciNet  Google Scholar 

  64. von Neumann, J., Beyer, R.T.: Mathematical Foundations of Quantum Mechanics. Princeton, N.J: Princeton University Press., ??? (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rueda-Paz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Toolbox for Quantum Basic Operations

This code was developed in Mathematica11.3 in order to help in calculating the state vectors, the density matrices, the tracing over inaccessible regions, the transpose and the entropies in this work.

To define a direct product function it was used:

figure a

Defining a state vector using the DirectProduct function (tip: also can be used an infix notation with \(\otimes \))

figure b

A vector obtained in this way can be stored with SparseArray to optimise calculations with long matrices

figure c

For calculating a density matrix can be used the KroneckerProduct function

figure d

In order to trace out over the (n-1) first qubits, was developed this code:

figure e

For tracing out over last qubit it’s necessary to use this code

figure f

Function to transpose the n-1 first qubits of a system.

figure g

Formula to transpose the last qubit of a system

figure h

The negativity can be calculated using this script

figure i

where IsNegativeFunction1D is defines as

figure j

Finally, to calculate von Neumann entropy it was developed

figure k

Appendix B. Form of GHZ States in a Non-inertial Frame

To better understand the results presented in this paper, it is necessary to examine the form of the GHZ states in a non-inertial frame, where a fully inertial GHZ state vector is a column vector of the form

$$\begin{aligned} | \mathrm GHZ \rangle _{1,2,\dots ,n}= \frac{1}{\sqrt{2}}\left( | 0_10_2\dots 0_n \rangle +| 1_11_2\dots 1_n \rangle \right) = \left( \frac{1}{\sqrt{2}},0,\dots ,0,\frac{1}{\sqrt{2}}\right) ^T \end{aligned}$$
(29)

where \(| \mathrm GHZ \rangle _{1,2,\dots ,n}\) has \(2^{n}\) entries and there are only two nonzero terms. Then, the n-th observer becomes non-inertial, so the column vector becomes

$$\begin{aligned} | \mathrm GHZ \rangle _{1,2,\dots ,n_{\textrm{I}},n_{\textrm{II}}}=\left( \frac{\cos (r)}{\sqrt{2}},0,\frac{\sin (r)}{\sqrt{2}},0,\dots ,0,\frac{1}{\sqrt{2}},0\right) ^T \end{aligned}$$
(30)

where \(| \mathrm GHZ \rangle _{1,2,\dots ,n_{\textrm{I}},n_{\textrm{II}}}\) has \(2^{n+1}\) entries and three non-zero terms. Then, as more qubits become non-inertial, the length of the column vector increases to \(2^{(n+q)}\) where \(2^{q}+1\) terms are nonzero. These terms are of the form \(\cos ^{\alpha }(r)\sin ^{\beta }(r)\) and there is \(2^{q}\) blocks of zeros of different length that separate them. For example, a heptapartite system with four non-inertial qubits is

$$\begin{aligned}&| GHZ \rangle _{1,2,3,4_{\textrm{I}},4_{\textrm{II}},5_{\textrm{I}},5_{\textrm{II}},6_{\textrm{I}},6_{\textrm{II}},7_{\textrm{I}},7_{\textrm{II}}}=\frac{1}{\sqrt{2}}\left( \cos ^4(r),\underbrace{0}_{2},\cos ^3(r)\sin (r),\underbrace{0}_{8},\right. \\&\left. \cos ^3(r)\sin (r),\underbrace{0}_{2},\cos ^2(r)\sin ^2(r),\underbrace{0}_{32},\cos ^3(r)\sin (r),\underbrace{0}_{2},\cos ^2(r)\sin ^2(r),\underbrace{0}_{8},\right. \\&\left. \cos ^2(r)\sin ^2(r),\underbrace{0}_{2},\cos (r)\sin ^3(r),\underbrace{0}_{128},\cos ^3(r)\sin (r),\underbrace{0}_{2},\cos ^2(r)\sin ^2(r),\underbrace{0}_{8},\right. \\&\left. \cos ^2(r)\sin ^2(r),\underbrace{0}_{2},\cos (r)\sin ^3(r),\underbrace{0}_{32},\cos ^2(r)\sin ^2(r),\underbrace{0}_{2},\cos (r)\sin ^3(r),\underbrace{0}_{8},\right. \\&\left. \cos (r)\sin ^3(r),\underbrace{0}_{2},\sin ^4(r),0,0,\dots ,0,0,\frac{1}{\sqrt{2}},\underbrace{0}_{85}\right) ^T \end{aligned}$$
(31)

where the labels under the zeroes indicate the number of actual zeroes within that particular block of zeroes. The blocks of zeros follow a sequence: blocks of 2 zeros alternate every 2 terms, blocks of 8 zeros alternate every 4 terms, blocks of 32 zeros alternate every 8 terms, and so on. Thta is, it is observed that the blocks of zeros are of length \(2^1,2^3,...,2^{(2q-1)}\). These alternate every \(2^1,2^2,2^3,\dots ,2^{(q-1)}\) terms, respectively. The number of zeros after the \(1/\sqrt{2}\) term also presents a regularity. This can be calculated with the formula

$$\begin{aligned} \sum \limits _{i=0}^{q-1} 2^{2 i} \end{aligned}$$
(32)

Now, it is considered the \(\cos ^{\alpha }(r)\sin ^{\beta }(r)\) terms. These present a regularity in the \(\alpha \) and \(\beta \) powers. It is possible to obtain these sequences by noting that for \(q=1\), these are \(\{1,0\}\), for \(q=2\) they are \(\{2,1,1,0\}\), for \(q=3\) they are

\(\{3,2,2,1,2,1,1,0\}\), for \(q=4\) it is possible to define the matrix

$$\begin{aligned} M^{(4)}=\begin{pmatrix} 4&{}3&{}3&{}2\\ 3&{}2&{}2&{}1\\ 3&{}2&{}2&{}1\\ 2&{}1&{}1&{}0\\ \end{pmatrix} \end{aligned}$$
(33)

where it is possible to read the correct sequence of powers of cosine. For \(q=5\) it can be defined

$$\begin{aligned} M^{(5)}=\begin{pmatrix} 5&{}4&{}4&{}3\\ 4&{}3&{}3&{}2\\ 4&{}3&{}3&{}2\\ 3&{}2&{}2&{}1\\ \end{pmatrix}~~,~~ M^{(4)}=\begin{pmatrix} 4&{}3&{}3&{}2\\ 3&{}2&{}2&{}1\\ 3&{}2&{}2&{}1\\ 2&{}1&{}1&{}0\\ \end{pmatrix} \end{aligned}$$
(34)

for \(q=6\) are \(\{M^{(6)},M^{(5)},M^{(5)},M^{(4)}\}\), for \(q=7\) these are \(\{M^{(7)},M^{(6)},M^{(6)},M^{(5)},\)\(M^{(6)},M^{(5)},M^{(5)},M^{(4)}\}\), and for \(q=8\) it is possible to define the matrix

$$\begin{aligned} \begin{pmatrix} M^{(8)}&{}M^{(7)}&{}M^{(7)}&{}M^{(6)}\\ M^{(7)}&{}M^{(6)}&{}M^{(6)}&{}M^{(5)}\\ M^{(7)}&{}M^{(6)}&{}M^{(7)}&{}M^{(5)}\\ M^{(6)}&{}M^{(5)}&{}M^{(5)}&{}M^{(4)}\\ \end{pmatrix} \end{aligned}$$
(35)

where again, it is possible to read the correct sequence of powers of cosine. It is easy to see that this pattern is followed for larger q. After this, the sequence of powers of sines can be obtained by subtracting each term \(M_{i,j}^{(q)}\) from 2q.

It is necessary to trace out over the antiparticle states in the region \(\textrm{II}\) of the density matrix \(\rho _{1,2,\dots ,n_{\textrm{I}},n_{\textrm{II}}}=| \mathrm GHZ \rangle _{1,2,\dots ,n_{\textrm{I}},n_{\textrm{II}}}\langle \mathrm GHZ |\). The partial trace over the inaccessible region \(\textrm{II}\) maps all non-zero terms on the diagonal of a \((2^{n-1}\)x\(2^{n-1})\) matrix (\(\rho _{1,2,\dots ,n_{\textrm{I}}}\)). This procedure removes all blocks of zeroes and most of the coherences. Therefore, the general form of a traced density matrix is

$$\begin{aligned} \left( \begin{array}{cccccc} \frac{\cos ^{2q}(r)}{2} &{} 0 &{} \dots &{} 0 &{} 0 &{} \frac{\cos ^q (r)}{2} \\ 0 &{} \frac{\cos ^{M^{(q)}_{i,j}}\!(r)\sin ^{2q-M^{(q)}_{i,j}}\!(r)}{2}&{}0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \ddots &{}0 &{} 0 &{} 0 \\ 0&{} 0 &{} 0 &{} \frac{\sin ^{2q}(r)}{2}&{} 0 &{} \vdots \\ \vdots &{} 0 &{} 0 &{} 0&{} \dots &{} 0 \\ \frac{\cos ^q (r)}{2} &{} 0 &{} \dots &{} 0 &{} 0 &{} \frac{1}{2} \\ \end{array} \right) \end{aligned}$$
(36)

where \(M^{(q)}_{i,j}\) refers to the sequence of terms that follow the powers of cosine. It must be noted that the terms \(\cos ^q(r)/2\) in the lower left and upper right corners are a property of the density matrices of GHZ states in a non-inertial frame.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueda-Paz, J., Manríquez-Zepeda, J.L., López-García, L. et al. N-partite Entanglement Measures of GHZ States in a Non-inertial Frame. Int J Theor Phys 62, 153 (2023). https://doi.org/10.1007/s10773-023-05378-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05378-w

Keywords

Navigation