Skip to main content
Log in

A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Nowadays quantum-dot cellular automata (QCA) as a nanoscale transistor-less device technology have attained major attention for their prominent features. The circuits constructed by QCA technology owning remarkable decreasing in size, fast switching speed and ultra-low energy consumption. These features can be more different in varied memory structures. Random access memory (RAM) is a kind of data storage devices that allows data to be read or written it’s generally volatile, and used for data that change often. Due to the significance of memory in a digital system, designing and optimization of high-speed RAM in QCA nanotechnology is a substantial subject. So, this paper presents a new structure for QCA-based RAM cell by employing the 3-input rotated majority gate (RMG). Eventually, 1 × 4 RAM is designed by exerting the individual memory cell. The functionality of the proposed design is implemented and assessed using the QCADesigner simulator. The obtained results demonstrated that the designed QCA-based RAM cell is superior to previous structures in terms of delay and cell count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farhangian, H., Abrishamifar, S.M., Palizian, M., Janghorban Lariche, M., Baghban, A.: The application of nanofluids for recovery of asphaltenic oil. Pet. Sci. Technol. 36(4), 287–292 (2018)

    Article  Google Scholar 

  2. Hosseini, M., Kahkha, M.R.R., Fakhri, A., Tahami, S., Lariche, M.J.: Degradation of macrolide antibiotics via sono or photo coupled with Fenton methods in the presence of ZnS quantum dots decorated SnO2 nanosheets. J. Photochem. Photobiol. B Biol. 185, 24–31 (2018)

    Article  Google Scholar 

  3. Lariche, M.J., et al.: Developing supervised models for estimating methylene blue removal by silver nanoparticles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1–8 (2019)

  4. Zuo, X., Behradfar, K., Liu, J.-B., Lariche, M.J., Najafi, M.: Theoretical study of ability of boron nitride nanocone to oxidation of sulfur monoxide. Acta Chim. Slov. 65(2), 296–302 (2018)

    Article  Google Scholar 

  5. Azimi, S., Angizi, S., Moaiyeri, M.H.: Efficient and robust SRAM cell design based on quantum-dot cellular automata. ECS Journal of Solid State Science and Technology. 7(3), Q38–Q45 (2018)

    Article  Google Scholar 

  6. Chaharlang, J., Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi Journal of Electrical Engineering. 11(2), (2017)

  7. Ying, Z., Zhong, Y., DENG, P.-m.: On behavior of two-dimensional cellular automata with an exceptional rule under periodic boundary condition. The Journal of China Universities of Posts and Telecommunications. 17(1), 67–72 (2010)

    Article  Google Scholar 

  8. Sen, B., Dutta, M., Some, S., Sikdar, B.K.: Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J. Emerg. Technol. Comput. Syst. (JETC). 11(3), 30 (2014)

    Google Scholar 

  9. Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  10. Moghaddam, M., Moaiyeri, M.H., Eshghi, M.: Design and evaluation of an efficient schmitt trigger-based hardened latch in CNTFET technology. IEEE Trans. Device Mater. Reliab. 17(1), 267–277 (2017)

    Article  Google Scholar 

  11. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Communication Networks. 16, 1–9 (2018)

    Article  Google Scholar 

  12. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2018)

    Article  Google Scholar 

  13. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 26(12), 1730004 (2017)

    Article  Google Scholar 

  14. Afrooz, S., Navimipour, N.J.: Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(9), 2598–2614 (2018)

    Article  Google Scholar 

  15. Roshan, M.G., Gholami, M.: Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. Int. J. Theor. Phys. 57(10), 3223–3241 (2018)

    Article  Google Scholar 

  16. Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)

    Article  Google Scholar 

  17. M. Abdullah-Al-Shafi and A. N. Bahar, "QCA: an Effective Approach to Implement Logic Circuit in Nanoscale," in Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference on, 2016: IEEE, pp. 620–624

  18. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

    Article  MathSciNet  Google Scholar 

  19. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-International Journal for Light and Electron Optics. 158, 243–256 (2018)

    Article  Google Scholar 

  20. Seyedi, S., Navimipour, N.J.: An optimized three-level Design of Decoder Based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 1–12 (2018)

  21. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  22. Zhang, Y., Xie, G., Cheng, X., Zhang, Z., Lv, H.: The implementation of I/O Interface in quantum-dot cellular automata. Optik. 166, 177–188 (2018)

    Article  ADS  Google Scholar 

  23. Hamian, M., Darvishan, A., Hosseinzadeh, M., Lariche, M.J., Ghadimi, N., Nouri, A.: A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm. Eng. Appl. Artif. Intell. 72, 203–212 (2018)

    Article  Google Scholar 

  24. Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., Ghadimi, N.: Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl. Therm. Eng. 137, 395–405 (2018)

    Article  Google Scholar 

  25. Akbary, P., Ghiasi, M., Pourkheranjani, M.R.R., Alipour, H., Ghadimi, N.: Extracting appropriate nodal marginal prices for all types of committed reserve. Comput. Econ. 1–26 (2017)

    Article  Google Scholar 

  26. Gollou, A.R., Ghadimi, N.: A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. J. Intell. Fuzzy Syst. 32(6), 4031–4045 (2017)

    Article  Google Scholar 

  27. Ebrahimian, H., Barmayoon, S., Mohammadi, M., Ghadimi, N.: The price prediction for the energy market based on a new method. Economic Research-Ekonomska istraživanja. 31(1), 313–337 (2018)

    Article  Google Scholar 

  28. Kreindl G., Miller R., Thanner C., Schachinger M, Hangweier P., High throughput parallel micro and nano-scale replication-a low cost alternative for the fabrication of electronic-, optic-and microfluidic devices. In 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012: IEEE, pp. 1–7

  29. Meena B.: Low Cost Flexible Electronic Devices by Use of Functional Nano-Inks, (2018)

    Google Scholar 

  30. Sasamal T. N., Singh A. K., Ghanekar U.: Design of QCA-based D Flip flop and memory cell using rotated majority gate, in Smart Innovations in Communication and Computational Sciences: Springer, 2019, pp. 233–247

  31. Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase clocking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16(12), 1648–1656 (2008)

    Article  Google Scholar 

  32. Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011)

    Article  Google Scholar 

  33. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 1–11 (2018)

  34. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  35. Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter. 521, 162–167 (2017)

    Article  ADS  Google Scholar 

  36. S. Pratibha, T. V. Kumar, and P. Sharan: An efficient design of QCA based memory," in Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on, 2016: IEEE, pp. 2750–2753

  37. Kianpour M., Sabbaghi-Nadooshan R.: A novel design and simulation of 16 bits RAM implementation in quantum-dot cellular automata (QCA), in 2012 16th IEEE Mediterranean Electrotechnical Conference, 2012: IEEE, pp. 637–640

  38. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2990–3004 (2017)

    Article  Google Scholar 

  39. Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38(4–5), 525–537 (2007)

    Article  Google Scholar 

  40. Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik-International Journal for Light and Electron Optics. 158, 477–489 (2018)

    Article  Google Scholar 

  41. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)

    Article  MathSciNet  Google Scholar 

  42. Khan A., Mandal S., Nag S., Chakrabarty R.: Efficient multiplexer design and analysis using quantum dot cellular automata, in Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, 2016: IEEE, pp. 163–168

  43. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012)

    Article  Google Scholar 

  44. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results in Physics. 7, 3543–3551 (2017)

    Article  ADS  Google Scholar 

  45. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Article  ADS  Google Scholar 

  46. Chabi A. M., Roohi A., DeMara R. F., Angizi S., Navi K., Khademolhosseini H.: Cost-Efficient QCA Reversible Combinational Circuits Based on a New Reversible Gate. In Computer Architecture and Digital Systems (CADS), 2015 18th CSI International Symposium on, 2015: IEEE, pp. 1–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Xiaohu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M., Xiaohu, Z., Lai, K.K. et al. A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology. Int J Theor Phys 58, 3961–3972 (2019). https://doi.org/10.1007/s10773-019-04261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04261-x

Keywords

Navigation