Skip to main content
Log in

On-Chip Multiphoton Entangled States by Path Identity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Multiphoton entanglement, as a quantum resource, plays an essential role in linear optical quantum information processing. Krenn et al. (Phys. Rev. Lett. 118, 080401 2017) proposed an innovative scheme that generating entanglement by path identity, in which two-photon interference (called Hong-Ou-Mandel effect) is not necessary in experiment. However, the experiments in this scheme have strict requirements in stability and scalability, which is difficult to be realized in bulk optics. To solve this problem, in this paper we first propose an on-chip scheme to generate multi-photon polarization entangled states, including Greenberger-Horne-Zeilinger (GHZ) states and W states. Moreover, we also present a class of generalized graphs for W states (odd-number-photon) by path identity in theory. The on-chip scheme can be implemented in existing integrated optical technology which is meaningful for multi-party entanglement distribution in quantum communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  2. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  3. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  4. Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multi-photon entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  7. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  8. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  9. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Article  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  11. Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  12. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  13. Alán, A.G., Walther, P.: Photonic quantum simulators. Nat. Physics 8, 285 (2012)

    Article  ADS  Google Scholar 

  14. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  15. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  16. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  17. Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534 (2018)

    Article  ADS  Google Scholar 

  18. Yao, X.-C., Wang, T.-X., Xu, P., Lu, H., Pan, G.-S., Bao, X.-H., Peng, C.-Z., Lu, C.-Y., Chen, Y.-A., Pan, J.-W.: Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)

    Article  ADS  Google Scholar 

  19. Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., Lu, H., Hu, Y., Jiang, X., Peng, C.-Z., Li, L., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Pan, J.-W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)

    Article  ADS  Google Scholar 

  20. Zhong, H.-S., Li, Y., Li, W., Peng, L.-C., Su, Z.-E., Hu, Y., He, Y.- M., Ding, X., Zhang, W.-J., Li, H., Zhang, L., Wang, Z., You, L.-X., Wang, X.-L., Jiang, X., Li, L., Chen, Y.-A., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018)

    Article  ADS  Google Scholar 

  21. Ou, Z.Y., Mandel, L.: Violation of bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Adcock, J.C., Vigliar, C., Santagati, R., Silverstone, J.W., Thompson, M.G.: Programmable four-photon graph states on a silicon chip. arXiv:1811.03023v1 (2018)

  23. Krenn, M., Hochrainer, A., Lahiri, M., Zeilinger, A.: Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zou, X.Y., Wang, L.J., Mandel, L.: Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318 (1991)

    Article  ADS  Google Scholar 

  25. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  26. Moreno, M., Cunha, M., Parisio, F.: Remote preparation of W states from imperfect bipartite sources. Quantum Inf. Process 15(9), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Rangarajan, R., Goggin, M., Kwiat, P.: Optimizing type-I polariza-tion-entangled photons. Opt. Express 17(21), 18920–18933 (2009)

    Article  ADS  Google Scholar 

  28. Niu, X.L., Huang, Y.F., Xiang, G.Y., Guo, G.C., Ou, Z.Y.: Beamlike high-brightness source of polarization-entangled photon pairs. Opt. Lett. 33, 968 (2008)

    Article  ADS  Google Scholar 

  29. Lahiri, M.: Many-particle interferometry and entanglement by path identity. Phys. Rev. A 98, 033822 (2018)

    Article  ADS  Google Scholar 

  30. Krenn, M., Gu, X., Zeilinger, A.: Quantum experiments and graphs: Multiparty states as coherent superpositions of perfect matchings. Phys. Rev. Lett. 119, 240403 (2017)

    Article  ADS  Google Scholar 

  31. Gu, X., Erhard, M., Zeilinger, A., Krenn, M.: Quantum Experiments and Graphs II: Computation and State Generation with Probabilistic Sources and Linear Optics. arXiv:1803.10736 (2018)

  32. Gu, X., Chen, L., Zeilinger, A., Krenn, M.: Quantum experiments and graphs III: high-dimensional and multi-particle entanglement. arXiv:1812.09558 (2018)

  33. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nat. Photonics 12, 759 (2018)

    Article  ADS  Google Scholar 

  34. Silverstone, J.W., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8, 104 (2013)

    Article  ADS  Google Scholar 

  35. Jin, H., Liu, F.M., Xu, P., Xia, J.L., Zhong, M.L., Yuan, Y., Zhou, J.W., Gong, Y.X., Wang, W., Zhu, S.N.: On-Chip Generation and manipulation of entangled photons based on reconfigurable Lithium-Niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014)

    Article  ADS  Google Scholar 

  36. Faruque, I.I., Sinclair, G.F., Bonneau, D., Rarity, J.G., Thompson, M.G.: On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express 26(16), 20379 (2018)

    Article  ADS  Google Scholar 

  37. Olislager, L., Safioui, J., Clemmen, S., Huy, K.P., Bogaerts, W., Baets, R., Emplit, P., Massar, S.: Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 38, 1960 (2013)

    Article  ADS  Google Scholar 

  38. Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3(4), 407 (2016)

    Article  ADS  Google Scholar 

  39. Gimeno-Segovia, M., Shadbolt, P., Browne, D.E., Rudolph, T.: From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115(2), 020502 (2015)

    Article  ADS  Google Scholar 

  40. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)

    Article  ADS  Google Scholar 

  41. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research is funded by Project supported by the National Science Foundation of Guangdong Province, China (Grant No.2016A030312012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianfeng Feng or Xiaoqian Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Zhang, X., Tian, Y. et al. On-Chip Multiphoton Entangled States by Path Identity. Int J Theor Phys 58, 3726–3733 (2019). https://doi.org/10.1007/s10773-019-04243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04243-z

Keywords

Navigation