Skip to main content
Log in

Quantum Sensing of Curvature

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We address the problem of sensing the curvature of a manifold by performing measurements on a particle constrained to the manifold itself. In particular, we consider situations where the dynamics of the particle is quantum mechanical and the manifold is a surface embedded in the three-dimensional Euclidean space. We exploit ideas and tools from quantum estimation theory to quantify the amount of information encoded into a state of the particle, and to seek for optimal probing schemes, able to actually extract this information. Explicit results are found for a free probing particle and in the presence of a magnetic field. We also address precision achievable by position measurement, and show that it provides a nearly optimal detection scheme, at least to estimate the radius of a sphere or a cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bachtold, A., Strunk, C., Salvetat, J.-P., Bonard, J.-M., Forrò, L., Nussbaumer, T., Schönenberger, C.: Aharonov-bohm oscillations in carbon nanotubes. Nature (London) 397, 673 (1999)

    Article  ADS  Google Scholar 

  2. Aoki, H., Suezawa, H.: Landau quantization of electrons on a sphere. Phys. Rev. A 46, R1163 (1992)

    Article  ADS  Google Scholar 

  3. Greiter, M., Thomale, R.: Landau level quantization of Dirac electrons on the sphere. Ann. Phys. 394, 33 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ju, H., Vagner, I.D., Sundaram, B.: Electrons confined on the surface of a sphere in a magnetic field. Phys. Rev. B 46, 9501 (1992)

    Article  ADS  Google Scholar 

  5. Entin, M.V., Magarill, L.I.: Spin-orbit interaction of electrons on a curved surface. Phys. Rev. B 64, 085330 (2001)

    Article  ADS  Google Scholar 

  6. Cruz, P.C.S., Bernardo, R.C.S., Esguerra, J.P.H.: Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields. Ann. Phys. 379, 159 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Perfetto, E., Gonzàlez, J., Guinea, F., Bellucci, S., Onorato, P.: Quantum Hall effect in carbon nanotubes and curved graphene strips. Phys. Rev. B 76, 125430 (2007)

    Article  ADS  Google Scholar 

  8. DeWitt, B.S.: Dynamical theory in curved spaces. i. a review of the classical and quantum action principles. Rev. Mod. Phys. 29, 377–397 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jensen, H., Koppe, H.: Quantum mechanics with constraints. Ann. Phys. 63, 586 (1971)

    Article  ADS  Google Scholar 

  10. da Costa, R.C.T.: Quantum mechanics of a costrained particle. Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. da Costa, R.C.T.: Constraints in quantum mechanics. Phys Rev A 25, 2893 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  13. Destri, C., Maraner, P., Onofri, E.: On the definition of quantum free particle on curved manifolds. Nuovo Cim. 107, 237 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ferrari, G., Cuoghi, G.: Schrödinger equation for a particle on a curved surface in an electric and magnetic field. Phys. Rev. Lett. 100, 230403 (2008)

    Article  ADS  Google Scholar 

  15. Bernard, B.J., Lew Yan Voon, L.C.: Notes on the quantum mechanics of particles constrained to curved surfaces. Eur. J. Phys. 34, 1235 (2013)

    Article  MATH  Google Scholar 

  16. Shikakhwa, M.S., Chair, N.: Hamiltonian for a particle in a magnetic field on a curved surface in orthogonal curvilinear coordinates. Phys. Lett. A 380, 2876 (2016)

    Article  ADS  MATH  Google Scholar 

  17. Helstrom, C.W.: Cramèr-rao inequalities for operator-valued measures in quantum mechanics. Int. J. Theor. Phys. 8, 361 (1973)

    Article  MathSciNet  Google Scholar 

  18. Helstrom, C.W.: Estimation of a displacement parameter of a quantum system. Int. J. Theor. Phys. 11, 357 (1974)

    Article  MathSciNet  Google Scholar 

  19. Fujiwara, A., Nagaoka, H.: Quantum Fisher metric and estimation for pure state models. Phys. Lett. A 201, 119 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Paris, M.G.A.: Quantum estimation for Quantum Technology. Int. J. Quantum Inf. 07, 125 (2009)

    Article  MATH  Google Scholar 

  22. Seveso, L., Rossi, M.A.C., Paris, M.G.A.: Quantum metrology beyond the quantum Cramér-Rao theorem. Phys. Rev. A 95, 012111 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Invernizzi, C., Paris, M.G.A., Pirandola, S.: Optimal detection of losses by thermal probes. Phys. Rev. A 84, 022334 (2011)

    Article  ADS  Google Scholar 

  24. Smirne, A., Cialdi, S., Anelli, G., Paris, M.G.A., Vacchini, B.: Quantum probes to assess correlations in a composite system. Phys. Rev. A 88, 012108 (2013)

    Article  ADS  Google Scholar 

  25. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 89, 032114 (2014)

    Article  ADS  Google Scholar 

  26. Paris, M.G.A.: Quantum probes for fractional Gaussian processes. Phys. A 413, 256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Benedetti, C., Paris, M.G.A.: Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A 378, 2495 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Rossi, M.A.C., Paris, M.G.A.: Entangled quantum probes for dynamical environmental noise. Phys. Rev. A 92(R), 010302 (2015)

    Article  ADS  Google Scholar 

  29. Tamascelli, D., Olivares, S., Benedetti, C., Paris, M.G.A.: Characterization of qubit chains by Feynman probes. Phys. Rev. A 94, 042129 (2016)

    Article  ADS  Google Scholar 

  30. Seveso, L., Paris, M.G.A.: Can quantum probes satisfy the weak equivalence principle. Ann. Phys. 380, 213 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bina, M., Grasselli, F., Paris, M.G.A.: Continuous-variable quantum probes for structured environments. Phys. Rev. A 97, 012125 (2018)

    Article  ADS  Google Scholar 

  32. Benedetti, C., Salari Sehdaran, F., Zandi, M.H., Paris, M.G.A.: Quantum probes for the cutoff frequency of Ohmic environments. Phys. Rev. A 97, 012126 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by SERB through project VJR/2017/000011. MGAP is member of GNFM-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo G. A. Paris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonalda, D., Seveso, L. & Paris, M.G.A. Quantum Sensing of Curvature. Int J Theor Phys 58, 2914–2935 (2019). https://doi.org/10.1007/s10773-019-04174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04174-9

Keywords

Navigation