Skip to main content
Log in

Induced States from Coherent State via Photon-Addition Operations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Three classes of quantum states are induced from coherent state (CS) based on three operations associated with the photon creation operator. One class is the famous photon-added coherent state (PACS) introduced by Agarwal and Tara (Phys. Rev. A 43, 492–497, 1991). The other two classes are the orthogonal states of the CS (Here we abbreviate them as OCS1 and OCS2). Indeed, the OCS1 is just the displacement Fock state, and the OCS2 is constructed by orthogonalizer proposed by Kim group (Phys. Rev. Lett. 116, 110501, 2016). In contrast to the original CS, the three induced states can exhibit their respective nonclassical properties. We study and compare some properties for these four quantum states (CS, PACS, OCS1, OCS2). The studied properties include the mean number of photons, the sub-Poissonian character, the squeezing effect in the field quadrature, and the quasi-probability distributions including the Husimi Q function and the Wigner function. Besides, their fidelities between each two of them are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klauder, J.R.: The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 11, 123 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  4. Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sanders, B.C.: Entangled coherent states. Phys. Rev. A. 45, 6811 (1992)

    Article  ADS  Google Scholar 

  6. Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101 (2004)

    Article  ADS  Google Scholar 

  7. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  8. Prakash, G.S., Agarwal, G.S.: Pair excitation-deexcitation coherent states. Phys. Rev. A 52, 2335 (1995)

    Article  ADS  Google Scholar 

  9. Mancini, S.: Even and odd nonlinear coherent states. Phys. Lett. A 233, 291 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gilchrist, A., Munro, W.J.: Signatures of the pair-coherent state. J. Opt. B: Quantum Semiclass. Opt. 2, 47 (2000)

    Article  ADS  Google Scholar 

  11. Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, New York (2003)

    Google Scholar 

  13. Dodonov, V.V.: Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Friedman, J.R., Patel, V., Chen, W., Tolpygo, S.K., Lukens, J.E.: Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000)

    Article  ADS  Google Scholar 

  15. Yukawa, M., Miyata, K., Mizuta, T., Yonezawa, H., Marek, P., Filip, R., Furusawa, A.: Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express 21, 5529 (2013)

    Article  ADS  Google Scholar 

  16. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon Schrodinger cat states. Science 342, 607 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wang, J.S., Meng, X.G.: Wigner functions and tomograms of the photon-depleted even and odd coherent states. Chin. Phys. B 17, 1254 (2008)

    Article  Google Scholar 

  18. Gribbin, J.: In: Search of Schrodinger’s Cat. Transworld Publishers, Ltd (1984)

  19. Wakui, K., Takahashi, H., Furusawa, A., Sasaki, M.: Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express. 15, 3568 (2007)

    Article  ADS  Google Scholar 

  20. Bellini, M., Zavatta, A.: Manipulating light states by single-photon addition and subtraction. Prog. Optics 55, 41 (2010)

    Article  Google Scholar 

  21. Zavatta, A., Parigi, V., Kim, M.S., Jeong, H., Bellini, M.: Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. Phys. Rev. Lett. 103, 140406 (2009)

    Article  ADS  Google Scholar 

  22. Park, J., Joo, J., Zavatta, A., Bellini, M., Jeong, H.: Efficient noiseless linear amplification for light fields with larger amplitudes. Opt. Express. 24, 1331 (2016)

    Article  ADS  Google Scholar 

  23. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  24. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  25. Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)

    Article  ADS  Google Scholar 

  26. Simon, D.S., Jaeger, G., Sergienko, A.V.: Entangled-coherent-state quantum key distribution with entanglement witnessing. Phys. Rev. A 89, 012315 (2014)

    Article  ADS  Google Scholar 

  27. Vanner, M.R., Aspelmeyer, M., Kim, M.S.: Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. Phys. Rev. Lett. 110, 010504 (2013)

    Article  ADS  Google Scholar 

  28. Coelho, A.S., Costanzo, L.S., Zavatta, A., Hughes, C., Kim, M.S., Bellini, M.: Universal continuous-variable state orthogonalizer and qubit generator. Phys. Rev. Lett. 116, 110501 (2016)

    Article  ADS  Google Scholar 

  29. Jezek, M., Micuda, M., Straka, I., Mikova, M., Dusek, M., Fiurasek, J.: Orthogonalization of partly unknown quantum states. Phys. Rev. A 89, 042316 (2014)

    Article  ADS  Google Scholar 

  30. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A. 43, 492 (1991)

    Article  ADS  Google Scholar 

  31. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gerry, C.C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  33. Mandel, L.: Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  34. Anderson, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016)

    Article  ADS  Google Scholar 

  35. Xu, X.X., Yuan, H.C., Ma, S.J.: Measurement-induced nonclassical states from a coherent state heralded by Knill-Laflamme-Milburn-type interference. J. Opt. Soc. Am. B 33, 1322 (2016)

    Article  ADS  Google Scholar 

  36. Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    MATH  Google Scholar 

  37. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  38. Li, H.M., Yuan, H.C., Fan, H.Y.: Single-mode excited GHZ-type entangled coherent state. Int. J. Theor. Phys. 48, 2849 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclassicl Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hu, L.Y., Fan, H.Y.: Statistical properties of photon-subtracted squeezed vacuum in thermal environment. J. Opt. Soc. Am. B 25, 1955 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Jun Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Nos.11665013 and 11704051), the Natural Science Foundation of Jiangsu Province(No.BK20171197), the Jiangsu Collaborative Innovation Centre for Cultural Creativity (No.XYN1706), and the Research Foundation of 333 Project of Jiangsu Province (No.BRA2018161).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, HC., Xu, XX., Cai, JW. et al. Induced States from Coherent State via Photon-Addition Operations. Int J Theor Phys 58, 1908–1926 (2019). https://doi.org/10.1007/s10773-019-04086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04086-8

Keywords

Navigation