Skip to main content
Log in

Hash Function Based on Quantum Walks

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Higher security and lower collision rate have always been people’s pursuits in the construction of hash functions. We consider a quantum walk where a walker is driven by two coins alternately. At each step, a message bit decides whether to swap two coins. In this way, a keyed hash function is constructed. Theoretically infinite possibilities of the initial parameters as the key ensure the security of the proposed hash function against the unforgery and collision resistance. Finally, we establish a generic quantum walk-based hash function model and give a guide in constructing hash functions in quantum walk architecture. It also provides a clue for the construction of other quantum walk-based cryptography protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’89, Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer-Verlag, Berlin (1989)

  2. Gibson, J.K.: Discrete logarithm hash function that is collision free and one way. IEEE Proceedings on Computers and Digital Techniques. 138(6), 407–410 (1991)

    Article  Google Scholar 

  3. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’89, Lecture Notes in Computer Science, vol. 435, Springer-Verlag, Berlin (1989), pp. 428–446 (1990)

  4. Damgård, I. B.: Collision free hash functions and pubic key signature schemes. In: Chaum, D., Price, WL. (eds.) Advances in Cryptology, Proc. Eurocrypt’87, LNCS 304, pp. 203–216. Springer-Verlag, 1988

  5. Rivest, R.L.: The MD4 Message Digest Algorithm. Advances in Cryptology-Crypto’90. Springer-Verlag, Berlin (1990)

    Google Scholar 

  6. Rivest, R. L.: The MD5 message digest algorithm. Request for Comments (RFC 1320), Internet Activities Board, Internet Privacy Task Force, 1992

  7. Federal Information Processing Standards Publication 180, Secure Hash Standard (1993)

  8. Federal Information Processing Standards Publication 180–1, Secure Hash Standard (1995)

  9. Federal Information Processing Standards Publication 180–2, Secure Hash Standard (2004)

  10. NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition. NIST (2012)

  11. Zheng, Y., Pieprzyk, J., Seberry, J.: Haval-A one-way hashing algorithm with variable length of output. Advances in Cryptology, Aus-crypto’92, pp. 83–104. Springer-Verlag, New York (1992)

    Google Scholar 

  12. Dobbertin, H.: RIPEMD with two round compress function is not collision-free. J. Cryptol. 10, 51–69 (1997)

    Article  MATH  Google Scholar 

  13. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. In: Rump Session of Crypto’04 E-print, pp.199 (2004)

  14. Wang, X., Lai, X., Feng, D., et al: Cryptanalysis of the hash functions MD4 and RIPEMD. In: Proceedings of Eurocrypt’05, Aarhus, Denmark, pp. 1–18 (2005)

  15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Proceedings of Eurocrypt’05, Aarhus, Denmark, pp. 19–35 (2005)

  16. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz J., Shacham H. (eds) Advances in Cryptology–CRYPTO 2017. LNCS 10401. Springer, Cham

  17. Lucks, S.: Failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

  18. Biham, E., Dunkelman, O.: A framework for iterative hash functions—HAIFA. Cryptology ePrint Archive: Report 2007/278 (2007)

  19. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V.: Sponge functions. ECRYPT Hash Workshop, 2007

  20. Yang, Y.-J., Chen, F., Zhang, X.-M., Yu, J.-P., Zhang, P.: Research on the hash function structures and its application. Wireless Pers. Commun. 94, 2969–2985 (2017)

    Article  Google Scholar 

  21. Tiwari, H., Asawa, K.: A secure and efficient cryptographic hash function based on new-FORK-256. Egypt Inf J. 13, 199–208 (2012)

    Article  Google Scholar 

  22. Abdulaziz, M., Khalil, I., Imad, F., Mohammad, A.: A new design of cryptographic hash function: gear. International Journal on Perceptive and Cognitive Computing. 1(1), 29–34 (2015)

    Google Scholar 

  23. Aharonov, D., Ambainis, A., Kempe, J., et al. Quantum walks on Graphs. Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50–59 (2001)

  24. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210 (239, 2007)

  25. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A Math. Theor. 47(32), 325302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chakraborty, S., Novo, L., Di Giorgio, S., Omar, Y.: Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017)

    Article  ADS  Google Scholar 

  28. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16, 221 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., Shi, W.-M., Chen, X.-B., Li, J., Zuo, H.-J.: Quantum network communication: a discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61(4), 042501 (2018)

    Article  MathSciNet  Google Scholar 

  30. Babatunde, A.M., Cresser, J., Twamley, J.: Using a biased quantum random walk as a quantum lumped element router. Phys. Rev. A. 90(1), 012339 (2014)

    Article  ADS  Google Scholar 

  31. Xu, G., Chen, X.B., Zhao, D., Li, Z.P., Yang, Y.X.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14, 4297–4322 (2015)

  33. Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)

    Article  ADS  Google Scholar 

  34. Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54, 2505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, D., Zhang, J., Guo, F.-Z.,·Huang, W., Wen, Q.-Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12,1501–1513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quant. Inf. Process. 6, 2167–2176 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Yang, Y.-G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)

    Article  ADS  Google Scholar 

  38. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A. 85, 022307 (2012)

    Article  ADS  Google Scholar 

  39. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A. 67, 052307 (2003)

    Article  ADS  Google Scholar 

  40. Stefaňák, M., Barnett, S.M., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)

    Article  ADS  Google Scholar 

  41. Li, D., Yang, Y.-G., Bi, J.-L., Yuan, J.-B., Xu, J.: Controlled alternate quantum walks based quantum Hash function. Sci. Rep. 8, 225 (2018)

    Article  ADS  Google Scholar 

  42. Yang, Y.-G., Zhang, Y.-C., Xu, G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Improving the efficiency of quantum Hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China-Phys. Mech. Astron. 61(3), 030312 (2018)

    Article  ADS  Google Scholar 

  43. Yang, Y.-G., Bi, J.-L., Chen, X.-B., Yuan, Z., Zhou, Y.-H., Shi, W.-M.: Simple hash function using discrete-time quantum walks. Quantum Inf. Process. 17, 189 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Cao, W.-F., Zhang, Y.-C., Yang, Y.-G., Li, D., Zhou, Y.-H., Shi, W.-M.: Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Inf. Process. 17, 156 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Merkle, R.C.: Secrecy, Authentication and Public Key Systems. Ph.D. thesis, UMI Research Press, Italy (1979)

  46. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory. IT-22, 644–654 (1976)

  47. Merkle, R.C.: In Secrecy, Authentication, and Public Key Systems, vol. 18 of Computer science. Systems programming. UMI Research Press, 1982.

  48. Rabin, M.O.: Digitalized signatures. In: Lipton, R., DeMillo, R. (eds.) Foundations of Secure Computation, pp. 155–166. New York, Academic Press (1978)

    Google Scholar 

  49. Damgård, I. B.: The application of claw free functions in cryptography. PhD Thesis, Aarhus University, Mathematical Institute, 1988

  50. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.470–484 (1997)

  51. Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, Y.H.: Beyond regular semigroups. Semigroup Forum. 92(2), 414–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: Bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcation Chaos. 26(11), 1630031 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Liang, X., Gao, F., Zhou, C.-B., Wang, Z., Yang, X.-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Difference Equ. 2018(25), (2018)

  55. Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)

  56. Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic Sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yin, C., Cheng, Y.H., Zhong, S.M., Bai, Z.B.: Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems. Complexity. 21(6), 363–373 (2016)

    Article  MathSciNet  Google Scholar 

  59. Liu, F., Mao, S.Z., Wu, H.X.: On rough singular integrals related to homogeneous mappings. Collect. Math. 67(1), 113–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, F., Chen, T., Wu, H.X.: A note on the endpoint regularity of the Hardy-littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhou, J.P., Sang, C.Y., Li, X., Fang, M.Y., Wang, Z.: H∞ consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)

  62. Liu, F., Wang, F.: Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Math. Sin. (Engl. Ser.). 32(4), 507–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Cui, Y.J.: Existence of solutions for coupled integral boundary value problem at resonance. Publ. Math. Debr. 89(1–2), 73–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Cui, Y.J., Zou, Y.M.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Modell. Control. 21(6), 828–838 (2016)

    Article  MathSciNet  Google Scholar 

  65. Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for Hamiltonian structure of Nls-Mkdv hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209, 2016

  66. Liu, F., Wu, H.X.: L-p bounds for marcinkiewicz integrals associated to homogeneous mappings. Monatshefte Fur Mathematik. 181(4), 875–906 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Li, X.P., Lin, X.Y., Lin, Y.Q.: Lyapunov-Type conditions and stochastic differential equations driven by G-brownian motion. J. Math. Anal. Appl. 439(1), 235–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu, F., Zhang, D.Q.: Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces. Math. Inequal. Appl. 19(2), 499–522, 2016

  69. Zhao, Y., Zhang, W.H.: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise. J. Syst. Sci. Complex. 29(4), 946–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435(1), 593–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Advances in Computational Mathematics 44(1):245–275 (2018)

  72. Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    MathSciNet  MATH  Google Scholar 

  73. Liu, F., Zhang, D.Q.: Parabolic marcinkiewicz integrals associated to polynomials compound curves and extrapolation. Bull. Korean Math. Soc. 52(3), 771–788 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Ling, S.T., Cheng, X.H., Jiang, T.S.: An algorithm for coneigenvalues and coneigenvectors of quaternion matrices. AACA. 25(2), 377–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  75. Liu, F., Wu, H.X., Zhang, D.Q.: L-p bounds for parametric marcinkiewicz integrals with mixed homogeneity. Math. Inequal. Appl. 18(2), –453, 469 (2015)

  76. Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44(1),245–275 (2018)

  77. Gao, M., Sheng, L., Zhang, W.H.: Stochastic H-2/H-infinity control of nonlinear systems with time-delay and state-dependent noise. Appl. Math. Comput. 266, 429–440 (2015)

    MathSciNet  MATH  Google Scholar 

  78. Li, Y.X., Huang, X., Song, Y.W., Lin, J.N.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurcation Chaos. 25(11), 1550151 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  79. Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)

    MathSciNet  MATH  Google Scholar 

  80. Liu, F.: Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces, Revista de la Real Academia de Ciencias Exactas. Fisicas y Nat. Ser. A. Math. 112(2),593–614 (2018)

  81. Wang, W., Zhang, T.Q.: Caspase-1-mediated pyroptosis of the predominance for driving CD4++ T cells death: a nonlocal spatial mathematical model. Bull. Math. Biol. 80(3),540–582 (2018)

  82. Li, H.J., Zhu, Y.L., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326,1–15 (2018)

  83. Cui, Y.J., Ma, W.J., Sun, Q., Su, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Modell. Control. 23(1),31–39 (2018)

  84. Liu, F., Mao, S.Z.: L-p bounds for nonisotropic marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 99(3), 380–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  85. Tramontana, F., Elsadany, A.A., Xin, B.G., Agiza, H.N.: Local stability of the cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  86. Cui, Y.J., Ma, W.J., Wang, X.Z., Su, X.W.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. (9),1–10 (2018)

  87. Tan, C., Zhang, W.H.: On observability and detectability of continuous-time stochastic Markov jump systems. J. Syst. Sci. Complex. 28(4), 830–847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yan, Z.G., Zhang, G.S., Wang, J.K., Zhang, W.H.: State and output feedback finite-time guaranteed cost control of linear it stochastic systems. Journal of Systems Science & Complexity. 28(4), 813–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  89. Li, L., Wang, Z., Li, Y.X., Shen, H., Lu, J.W.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330,152–169 (2018)

  90. Jiang, D.-H., Wang, X.-J., Xu, G.-B., Lin, J.-Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8,447–462 (2018)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Beijing Natural Science Foundation (Grant No.4182006); the National Natural Science Foundation of China (Grant Nos. 61671087,U1636106,61602019, 61571226, 61701229, 61702367); Natural Science Foundation of Jiangsu Province, China (Grant No.BK20170802); Jiangsu Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Bi, JL., Li, D. et al. Hash Function Based on Quantum Walks. Int J Theor Phys 58, 1861–1873 (2019). https://doi.org/10.1007/s10773-019-04081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04081-z

Keywords

PACS

Navigation