Skip to main content
Log in

Entangled Fourier Transformation and its Application in Weyl-Wigner Operator Ordering and Fractional Squeezing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In order to entangle the functions to be transformed, we proposed the entangled. Fourier integration transformation (EFIT) which has the property of keeping modulus-invariant for its inverse transformation. Then we then studied Wigner operator’s EFIT and found that a function’s EFIT is just related to its Weyl-corresponding operator’s matrix element, in so doing we also derived new operator re-ordering formulas \( \delta \left(x-P\right)\left(y-Q\right)=\frac{1}{\pi }{\displaystyle \begin{array}{c}:\\ {}:\end{array}}{e}^{-2i\left(P-x\right)\left(Q-y\right)}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \);\( \delta \left(y-Q\right)\left(x-P\right)=\frac{1}{\pi }{\displaystyle \begin{array}{c}:\\ {}:\end{array}}{e}^{2i\left(P-x\right)\left(Q-y\right)}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \), where P, Q are momentum and coordinate operator respectively, the symbol \( {\displaystyle \begin{array}{c}:\\ {}:\end{array}}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \) denotes Weyl ordering. By virtue of EFIT we also found the operator which can generate fractional squeezing transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, H.Y.: Operator ordering in quantum optics theory and the development of Dirac's symbolic method. J.Opt.B. 5(4), 147–163 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Christ, N.H., Lee, T.D.: Operator ordering and Feynman rules in gauge theories. Phys. Rev. D. 68(1), 1022–1025 (1980)

    MathSciNet  Google Scholar 

  3. SW, H., Page, D.N.: Operator ordering and the flatness of the universe. Nuclear Physics B. 264(1), 185–196 (1986)

    ADS  MathSciNet  Google Scholar 

  4. Shapiro, M.: Canonical invariance as a unifying symmetry of nature: derivation of the coordinate-momentum commutation relation, the time-dependent Schroedinger equation, and Maxwell equations. Physical Review C. 43(4), 1932–1936 (1991)

    Google Scholar 

  5. Fan, H.Y., Lou, S.Y., Zhang, P.F., Physics, D.O., N University: Operator-ordering identities for mutual transformation of power of coordinate-momentum operators obtained by a new concise method. Acta Phys. Sin. 64(16), 153–157 (2015)

    Google Scholar 

  6. Sukhanov, A.D.: The generalized “coordinate-momentum” uncertainty relation in quantum mechanics and the theory of Brownian motion. J. Electrochem. Soc. 140(12), 3463–3463 (1993)

    Article  Google Scholar 

  7. Weiss, G.H., Maradudin, A.A.: The baker-Hausdorff formula and a problem in crystal Physics. J. Math. Phys. 3(4), 771–777 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M Newman, W So, RC Thompson.: Convergence domains for the campbell-baker-hausdorff formula. 24 (4):301–310 (1989)

  9. Kolsrud, M.: Maximal reductions in the baker-Hausdorff formula. J. Math. Phys. 34(1), 270–285 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fan, H.Y., Jiang, N.Q.: On the entangled fractional Fourier transform in tripartite entangled state representation. Communications in Theoretical Physic. 40(1), 39–44 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Shi, J., Shi, R., Tang, Y., Lee, M.H.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, Y., Lin, Q., Zhu, S.Y.: Coincidence fractional Fourier transform with entangled photon pairs and incoherent light. Appl. Phys. Lett. 86(2), 241 (2005)

    Article  Google Scholar 

  13. Fan, H.Y., Fan, Y.: EPR entangled states and complex fractional Fourier transformation. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics. 21(2), 233–238 (2002)

    ADS  MathSciNet  Google Scholar 

  14. Fan, H.Y., Liu, S.G.: New n-MODE Bose operator realization of SU(2) lie algebra and its application in entangled fractional Fourier transform. Modern Physics Letters A. 24(08), 615–624 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fan, H.Y.: Two-mode squeezed number state as a two-variable Hermite-polynomial excitation on the squeezed vacuum. J. Mod. Opt. 55(13), 2011–2024 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Dodonov, V.V.: Asymptotic formulae for two-variable Hermite polynomials. Journal of Physics A General Physics. 27(18), 6191 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. HY, F., Fan, Y.: New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials. Communications in Theoretical Physic. 38(9), 297–300 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Fan, H.Y., Li, H.Q., XL, X.: New route to deducing integration formulas by virtue of the IWOP technique. Commun. Theor. Phys. 55(55), 415–417 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chen, J., Fan, H.: Construction of quaternion coherent state with the use of IWOP method and some useful integration formulas over quaternion. Fish. Sci. 81(1), 53–64 (2011)

    Article  Google Scholar 

  20. HY, F., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A. 124(6), 303–307 (1987)

    ADS  MathSciNet  Google Scholar 

  21. Fan, H.Y., Wang, J.S.: New approach for calculating tomograms of quantum states by virtue of the IWOP technique. Commun. Theor. Phys. 47(3), 431–436 (2007)

    Article  ADS  Google Scholar 

  22. HY, F., HL, L., Gao, W.B., Xu, X.F.: ABCD rule for Gaussian beam propagation in the context of quantum optics derived by the IWOP technique. Ann. Phys. 321(9), 2116–2127 (2006)

    Article  ADS  MATH  Google Scholar 

  23. FAN, H.-Y., Xiao, M.: Wigner operator and squeezing for rotated quadrature phases. Modern Physics Letters B. 10(20), 989–998 (1996)

    Article  ADS  Google Scholar 

  24. HT, E., Gyulassy, M., Vasak, D.: Transport equations for the QCD quark Wigner operator. Nuclear Physics B. 276(3), 706–728 (1986)

    ADS  Google Scholar 

  25. Fan, H.Y., Jiang, N.Q.: Tripartite entangled Wigner operator, the Wigner function and its marginal distributions. Journal of Optics B Quantum & Semiclassical Optics. 5(3), 283 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hongyi, F., Hailing, C.: Two-parameter radon transformation of the Wigner operator and its inverse. Chin. Phys. Lett. 18(7), 850–853 (2001)

    Google Scholar 

  27. Daubechies, I.: On the distributions corresponding to bounded operators in the Weyl quantization. Commun. Math. Phys. 75(3), 229–238 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Carleson, A.L.: L2 estimates for Weyl quantization. J. Funct. Anal. 165(1), 173–204 (1999)

    Article  MathSciNet  Google Scholar 

  29. Kanatchikov, I.V.: Toward the born-Weyl quantization of fields. Int. J. Theor. Phys. 37(1), 333–342 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hong-Yi, T.X.-B., Tong-Tong, W.: Coordinate eigenstate representation in noncommutative space as a new entangled state in quantum mechanics. Commun. Theor. Phys. 48(10), 633–636 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zait, R.A., Elwahab, N.H.A.: Nonresonant interaction between a three-level atom with a momentum eigenstate and a one-mode cavity field in a Kerr-like medium. Journal of Physics B Atomic Molecular & Optica Physics. 35(17), 3701 (2002)

    Article  ADS  Google Scholar 

  32. Wünsche, A.: Quantum mechanical version of z-transform related to Eigenkets of boson creation operator. Communications in Theoretical Physic. 42(11), 675–680 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Fan, H.Y., Wünsche, A.: Eigenstates of boson creation operator. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics. 15(3), 405–412 (2001)

    ADS  Google Scholar 

  34. Xin, Z.Z., Zhao, Q., Hirayama, M., Matumoto, K.: Completeness relation of the eigenstates of the powers of the radiation-field amplitude. Phys. Rev. A. 50(5), 4419–4421 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China [Grant No. KJ2014A236]; National Natural Science Foundation of China [Grant No. 11775208].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Fan, C. & Fan, H. Entangled Fourier Transformation and its Application in Weyl-Wigner Operator Ordering and Fractional Squeezing. Int J Theor Phys 58, 1687–1697 (2019). https://doi.org/10.1007/s10773-019-04066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04066-y

Keywords

Navigation