Skip to main content
Log in

On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By a quantum mechanical analysis of the additive rule F α[F β[f]]=F α+β[f], which the fractional Fourier transformation (FrFT) F α[f] should satisfy, we reveal that the position-momentum mutual-transformation operator is the core element for constructing the integration kernel of FrFT. Based on this observation and the two mutually conjugate entangled-state representations, we then derive a core operator for enabling a complex fractional Fourier transformation (CFrFT), which also obeys the additive rule. In a similar manner, we also reveal the fractional transformation property for a type of Fresnel operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Fan and L. Y. Hu, Correpondence between quantum-optical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)

    Article  Google Scholar 

  2. V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl. 25(3), 241 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. C. McBride and F. H. Kerr, On Namias’s fractional Fourier transforms, IMA J. Appl. Math. 39(2), 159 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. H. M. Ozaktas and B. Barshan, Convolution, filtering, and mutiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms, J. Opt. Soc. Am. A 11(2), 547 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A 10(10), 2181 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Graded index fibers, Wigner distribution functions and the fractional Fourier transform, Appl. Opt. 33(26) 6188 (1994)

    Article  ADS  Google Scholar 

  7. L. M. Bernardo and O. D. D. Soares, Fractional Fourier transforms and optical systems, Opt. Commun. 110(5–6), 517 (1994)

    Article  ADS  Google Scholar 

  8. H. M. Ozaktas and D. Mendlovic, Fourier transforms of fractional order and their optical implementation, J. Opt. Soc. Am. A 10(12), 2522 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Chountasis, A. Vourdas, and C. Bendjaballah, Fractional Fourier operators and generalized Wigner functions, Phys. Rev. A 60(5), 3467 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation (I), J. Opt. Soc. Am. A 10(9), 1875 (1993)

    Article  ADS  Google Scholar 

  11. H.-Y. Fan, L.-Y. Hu, and J.-S. Wang, Eigenfunctions of complex fractional Fourier transformation obtained in the context of Quantum optics, J. Opt. Soc. Am. A 25(4), 974 (2008)

    Article  ADS  Google Scholar 

  12. H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B 5(4), R147 (2003)

    Article  ADS  Google Scholar 

  13. A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B 2(3), R11 (2000)

    Google Scholar 

  14. H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35(6), 1831 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)

    Article  ADS  MATH  Google Scholar 

  16. H. Y. Fan and X. Ye, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A 51(4), 3343 (1995)

    Article  ADS  Google Scholar 

  17. H. Y. Fan and Y. Fan, Representations of two-mode squeezing transformations, Phys. Rev. A 54(1), 958 (1996)

    Article  Google Scholar 

  18. H. Y. Fan and J. H. Chen, EPR entangled state and generalized Bargmann transformation, Phys. Lett. A 303(5–6), 311 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. A. Einstein, B. Podolsky, and N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47(3), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  20. H. Y. Fan, S. Wang, and H. Y. Hu, Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yi Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, HY., Chen, JH. On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations. Front. Phys. 10, 1–6 (2015). https://doi.org/10.1007/s11467-014-0445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0445-x

Keywords

Navigation