Skip to main content
Log in

Incompatibility of the Dirac-like Field Operators with the Majorana Anzatzen

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present article we investigate the spin-1/2 and spin-1 cases in different bases. Next, we look for relations with the Majorana-like field operator. We show explicitly incompatibility of the Majorana anzatzen with the Dirac-like field operators in both the original Majorana theory and its generalizations. Several explicit examples are presented for higher spins too. It seems that the calculations in the helicity basis only give mathematically and physically reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Ref. [6] for discussion.

  2. This opposes to the choice of the basis of the Section 2.1, where 4-spinors are the eigenstates of the parity operator, cf. [19].

  3. Alternatively, ↑↓ may refer to the chiral helicity eigenstates, e.g. \(u_{\eta } =\frac {1}{\sqrt {2}} \left (\begin {array}{c} N \phi _{\eta }\\N^{-1} \phi _{-\eta } \end {array}\right )\), see next sections and cf. [20, 21].

  4. Of course, there are no any mathematical difficulties to change it to the normalization to ± m, which may be more convenient for the study of the massless limit.

  5. The only possible changes may be related to different forms of normalization of 4-spinors, which would have influence on the factor before δ-function.

  6. We should have the same contradiction even if \(\varphi \rightarrow \alpha \).

  7. Please note that the phase factors may have physical significance in quantum field theories as opposed to the textbook nonrelativistic quantum mechanics, as was discussed recently by several authors.

  8. Such definitions of 4-spinors differ, of course, from the original Majorana definition in x-representation:

    $$ \nu (x) = \frac{1}{\sqrt{2}} ({\Psi}_{D} (x) + {{\Psi}_{D}^{c}} (x)) , $$
    (49)

    Cν(x) = ν(x) that represents the positive real C − parity field operator. However, the momentum-space Majorana-like spinors open various possibilities for description of neutral particles (with experimental consequences, see [27]). For instance, “for imaginary C parities, the neutrino mass can drop out from the single β decay trace and reappear in 0νββ, a curious and in principle experimentally testable signature for a non-trivial impact of Majorana framework in experiments with polarized sources.”

  9. The choice of the helicity parametrization (20) for \(\mathbf {p}\rightarrow \mathbf {0}\) is doubtful in Ref. [28], and it leads to unremovable contradictions, in my opinion.

  10. The change of the mass dimension of the field operator [28] has no sufficient foundations because the Lagrangian can be constructed on using the coupled Dirac equations, see Ref. [29]. After that one can play with \(\sqrt {m}\) to reproduce all possible mathematical results, which may (or may not) answer to the physical reality.

  11. However, remember, that we have the p0 = 0 solution of the Maxwell equations. It has the experimental confirmation (for instance, the stationary magnetic field curlB = 0).

  12. 00 in other notation.

References

  1. Dvoeglazov, V.V., Hadronic, J.: Suppl. 18, 239 (2003)

    Google Scholar 

  2. Dvoeglazov, V.V.: Int. J. Mod. Phys. B 20, 1317 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dvoeglazov, V.V. In: Dvoeglazov, V.V. (ed.) Einstein and Others: Unification, p 211. Nova Science Publishers, Hauppauge (2015)

  4. Dvoeglazov, V.V., Naturforsch, Z.: A 71, 345 (2016)

    Google Scholar 

  5. Dvoeglazov, V.V.: SFIN 22(A1), 157 (2009)

    Google Scholar 

  6. Dvoeglazov, V.V.: J. Phys. Conf. Ser. 284, 012024 (2011)

    Article  Google Scholar 

  7. Dvoeglazov, V.V.: Bled Workshops 10(2), 52 (2009)

    Google Scholar 

  8. Dvoeglazov, V.V.: Bled Workshops 11(2), 9 (2010)

    Google Scholar 

  9. Dvoeglazov, V.V.. In: Beyond the Standard Model. Proceedings of the Vigier Symposium, p 388. Noetic Press, Orinda (2005)

  10. Dvoeglazov, V.V.: Bled Workshops 14(2), 199 (2013)

    Google Scholar 

  11. Dirac, P.A.M.: Proc. Roy. Soc. Lond. A 117, 610 (1928)

    Article  ADS  Google Scholar 

  12. Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, Reading (1967)

    Google Scholar 

  13. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  14. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill Book Co., New York (1980)

    MATH  Google Scholar 

  15. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 2nd edn. Nauka, Moscow (1973)

    Google Scholar 

  16. Varshalovich, D.A., Moskalev, A.N., Khersonskiĭ, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988). §6.2.5

    Book  Google Scholar 

  17. Dvoeglazov, V.V.: Fizika B 6, 111 (1997)

    Google Scholar 

  18. Dvoeglazov, V.V.: Int. J. Theor. Phys. 43, 1287 (2004)

    Article  Google Scholar 

  19. Berestetskiĭ, V.B., Lifshitz, E.M., Pitaevskiĭ, L.P.: Quantum Electrodynamics. Pergamon, New York (1982). translated from the Russian, §16

    Google Scholar 

  20. Dvoeglazov, V.V.: Nuovo Cim. B 111, 483 (1996)

    Article  ADS  Google Scholar 

  21. Ahluwalia, D.V.: Int. J. Mod. Phys. A 11, 1855 (1996)

    Article  ADS  Google Scholar 

  22. Weinberg, S.: The Quantum Theory of Fields. Vol I. Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  23. Greiner, W.: Field Quantization. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  24. Tokuoka, Z.: Prog. Theor. Phys. 37, 603 (1967)

    Article  ADS  Google Scholar 

  25. Rück, H.M., Greiner, W.: J. Phys. G: Nucl. Phys. 3, 657 (1977)

    Article  ADS  Google Scholar 

  26. Majorana, E.: Nuovo Cim. 14, 171 (1937)

    Article  ADS  Google Scholar 

  27. Kirchbach, M., Compean, C., Noriega, L.: Eur. Phys. J. A 22, 149 (2004)

    Article  ADS  Google Scholar 

  28. Ahluwalia, D.V., Grumiller, D.: JCAP 0507, 012 (2005)

    Article  ADS  Google Scholar 

  29. Dvoeglazov, V.V.: Nuovo Cim. A 108, 1467 (1995)

    Article  ADS  Google Scholar 

  30. Dvoeglazov, V.V.: Mod. Phys. Lett. A 12, 2741 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. Dvoeglazov, V.V.: J. Phys. Conf. Ser. 1010, 012011 (2018)

    Article  Google Scholar 

  32. Novozhilov, Y.V.: Introduction to Elementary Particle Physics. Pergamon, New York (1975)

    Google Scholar 

  33. Dvoeglazov, V.V. In: Dvoeglazov, V.V. (ed.) Photon: Old Problems in Light of New Ideas. Nova Science Publishers, Huntington (2000)

  34. Ahluwalia, D.V., Sawicki, M.: Phys. Rev. D 47, 5161 (1993)

    Article  ADS  Google Scholar 

  35. Ahluwalia, D.V., Sawicki, M.: Phys. Lett. B 335, 24 (1994)

    Article  ADS  Google Scholar 

  36. Sankaranarayanan, A., Good Jr., R.H.: Nuovo Cim. 36, 1303 (1965)

    Article  ADS  Google Scholar 

  37. Ahluwalia, D.V., Johnson, M.B., Goldman, T.: Phys. Lett. B 316, 102 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. Dvoeglazov, V.V.: Int. J. Theor. Phys. 37, 1915 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I acknowledge discussions with colleagues at recent conferences. I am grateful to the Zacatecas University for professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy V. Dvoeglazov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoeglazov, V.V. Incompatibility of the Dirac-like Field Operators with the Majorana Anzatzen. Int J Theor Phys 58, 1369–1383 (2019). https://doi.org/10.1007/s10773-019-04008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04008-8

Keywords

Navigation